COUPLED FIXED POINTS OF SET VALUED MAPPINGS IN PARTIALLY ORDERED METRIC SPACES
-
1508
Downloads
-
2515
Views
Authors
ISMAT BEG
- Centre for Advanced Studies in Mathematics, Lahore University of Management Sciences, 54792-Lahore, Pakistan.
ASMA RAS BUTT
- Centre for Advanced Studies in Mathematics, Lahore University of Management Sciences, 54792-Lahore, Pakistan.
Abstract
Let \((X,\preceq)\) be a partially ordered set and \(d\) be a metric on \(X\)
such that \((X, d)\) is a complete metric space. Let \(F : X \times X \rightsquigarrow X\) be a mixed
monotone set valued mapping. We obtain sufficient conditions for the existence
of a coupled fixed point of \(F\).
Share and Cite
ISRP Style
ISMAT BEG, ASMA RAS BUTT, COUPLED FIXED POINTS OF SET VALUED MAPPINGS IN PARTIALLY ORDERED METRIC SPACES, Journal of Nonlinear Sciences and Applications, 3 (2010), no. 3, 179-185
AMA Style
BEG ISMAT, BUTT ASMA RAS, COUPLED FIXED POINTS OF SET VALUED MAPPINGS IN PARTIALLY ORDERED METRIC SPACES. J. Nonlinear Sci. Appl. (2010); 3(3):179-185
Chicago/Turabian Style
BEG , ISMAT, BUTT, ASMA RAS. "COUPLED FIXED POINTS OF SET VALUED MAPPINGS IN PARTIALLY ORDERED METRIC SPACES." Journal of Nonlinear Sciences and Applications, 3, no. 3 (2010): 179-185
Keywords
- Coupled fixed point
- partially ordered set
- metric space
- set valued mapping.
MSC
References
-
[1]
I. Beg, Random fixed points of increasing compact maps, Archivum Mathematicum , 37 (2001), 329-332.
-
[2]
I. Beg, A. Azam, Fixed points of asymptotically regular multivalued mappings, J. Austral. Math. Soc. (Series-A) , 53(3) (1992), 313-326.
-
[3]
I. Beg, A. R. Butt, Fixed point for set valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal. , 71 (2009), 3699-3704.
-
[4]
I. Beg, A. R. Butt , Fixed points for weakly compatible mappings satisfying an implicit relation in partially ordered metric spaces, Carpathian J. Math. , 25 (2009), 1-12.
-
[5]
I. Beg, A. R. Butt, Common fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces, Mathematical Communications, 15 (2010), 65-76.
-
[6]
I. Beg, A. Latif, R. Ali, A. Azam, Coupled fixed points of mixed monotone operators on probabilistic Banach spaces, Archivum Mathematicum , 37 (2001), 1-8.
-
[7]
T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379-1393.
-
[8]
P. Z. Daffer, Fixed points of generalized contractive multivalued mappings, J. Math. Anal. Appl., 192 (1995), 655-666.
-
[9]
P. Z. Daffer, H. Kaneko, W. Li, On a conjecture of S. Reich, Proc. Amer. Math. Soc., 124 (1996), 3159-3162.
-
[10]
Y. Feng, S. Liu , Fixed point theorems for multivalued contractive mappings and multivaled Caristi type mappings, J. Math. Anal. Appl., 317 (2006), 103-112.
-
[11]
D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear. Anal., 11 (1987), 623-632.
-
[12]
J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. , 71 (2009), 3403-3410.
-
[13]
J. Harjani, K. Sadarangani, Generalized contractions in partially ordered mtric spaces and applications to ordinary differential equations, Nonlinear Anal. doi:10.1016/j.na.2009.08.003, in press (2009)
-
[14]
W. A. Kirk, K. Goebel, Topics in Metric Fixed Point Theory , Cambridge University Press, Cambridge (1990)
-
[15]
D. Klim, D. Wardowski , Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl., 334 (2007), 132-139.
-
[16]
S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488.
-
[17]
J. J. Nieto, R. L. Pouso, R. Rodríguez-López, Fixed point theorems in ordered abstract spaces, Proc. Amer. Math. Soc., 135 (2007), 2505-2517.
-
[18]
J. J. Nieto, R. Rodríguez-López, Contractive mapping theorms in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223-239.
-
[19]
J. J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta. Math. Sinica, (English Ser.), 23 (2007), 2205-2212.
-
[20]
D. O'Regan, A. Petrusel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl., 341 (2008), 1241-1252.
-
[21]
A. Petrusel, I. A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc., 134 (2005), 411-418.
-
[22]
C. Y. Qing, On a fixed point problem of Reich, Proc. Amer. Math. Soc., 124 (1996), 3085-3088.
-
[23]
A. C. M. Ran, M. C. B. Reurings, A fixed point theorm in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435-1443.
-
[24]
S. Reich, Fixed points of contractive functions, Boll. Unione. Mat. Ital., 4 (1972), 26-42.
-
[25]
Y. Wu, New fixed point theorems and applications of mixed monotone operator, J. Math. Anal. Appl., 341 (2008), 883-893.
-
[26]
E. Zeidler, Nonlinear Functional Analysis and its Applications I: Fixed point Theorems, Springer Verlag, New York (1985)
-
[27]
Z. Zhitao, New fixed point theorems of mixed monotone operators and applications, J. Math. Anal. Appl., 204 (1996), 307-319.