Transmuted power function distribution revisited: simulation study and important lessons on starting values and local maxima
Authors
I. C. Geraldo
- Laboratoire d’Analyse, de Modélisations Mathématiques et Applications (LAMMA), Département de Mathématiques, Faculté des Sciences, Université de Lomé, 1 B.P. 1515 Lomé 1, Togo.
Abstract
In this paper, we consider the transmuted power function distribution (TPFD), an important flexible distribution with applications in lifetime modelling. In past studies, maximum likelihood (ML) was recommended as the best method to use for estimating the parameters of the TPFD. We study the ML estimation problem from a novel computational angle by making a comprehensive study in R software using some of the best optimization algorithms. This study enables us to draw some important lessons on some of the computational aspects sometimes neglected in solving maximum likelihood estimation problems.
Share and Cite
ISRP Style
I. C. Geraldo, Transmuted power function distribution revisited: simulation study and important lessons on starting values and local maxima, Journal of Nonlinear Sciences and Applications, 18 (2025), no. 4, 250--258
AMA Style
Geraldo I. C., Transmuted power function distribution revisited: simulation study and important lessons on starting values and local maxima. J. Nonlinear Sci. Appl. (2025); 18(4):250--258
Chicago/Turabian Style
Geraldo, I. C.. "Transmuted power function distribution revisited: simulation study and important lessons on starting values and local maxima." Journal of Nonlinear Sciences and Applications, 18, no. 4 (2025): 250--258
Keywords
- Numerical optimization
- iterative method
- maximum likelihood
- parameter estimation
- probability distributions
MSC
References
-
[1]
M. Ahsan ul Haq, N. S. Butt, R. M. Usman, A. A. Fattah, Transmuted power function distribution, Gazi Univ. J. Sci., 29 (2016), 177–185
-
[2]
R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2024)
-
[3]
A. Galántai, The Nelder-Mead simplex algorithm is sixty years old: New convergence results and open questions, Algorithms, 17 (2024), 21 pages
-
[4]
I. C. Geraldo, A study on the estimation of the transmuted generalized uniform distribution, Int. J. Sci. Res. Math. Stat. Sci., 7 (2020), 33–39
-
[5]
I. C. Geraldo, On the maximum likelihood method for the transmuted exponentiated gamma distribution, Int. J. Math. Stat., 22 (2021), 20–39
-
[6]
D. C. T. Granzotto, F. Louzada, N. Balakrishnan, Cubic rank transmuted distributions: inferential issues and applications, J. Stat. Comput. Simul., 87 (2017), 2760–2778
-
[7]
I. Griva, S. G. Nash, A. Sofer, Linear and nonlinear optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2009)
-
[8]
B. Hasselman, nleqslv: Solve Systems of Nonlinear Equations, R package version 3.3.5, (2023)
-
[9]
K. Lange, Optimization, Springer, New York (2013)
-
[10]
K. Lange, E. C. Chi, H. Zhou, A brief survey of modern optimization for statisticians, Int. Stat. Rev., 82 (2014), 46–70
-
[11]
G. Luebeck, R. Meza, Bhat: General Likelihood Exploration, R package version 0.9-12, (2022)
-
[12]
J. Nocedal, S. J. Wright, Numerical optimization, Springer, New York (2006)
-
[13]
M. N. Shahzad, Z. Asghar, Transmuted power function distribution: a more flexible distribution, J. Stat. Manag. Syst., 19 (2016), 519–539
-
[14]
W. T. Shaw, I. R. C. Buckley, The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skewkurtotic- normal distribution from a rank transmutation map, arXiv preprint arXiv:0901.0434, (2009), 8 pages
-
[15]
M. H. Tahir, M. Alizadeh, M. Mansoor, G. M. Cordeiro, M. Zubair, The Weibull-power function distribution with applications, Hacet. J. Math. Stat., 45 (2016), 245–265
-
[16]
C. Tanı¸s, On transmuted power function distribution: characterization, risk measures, and estimation, J. New Theory, 34 (2021), 72–81
-
[17]
R. Varadhan, alabama: Constrained Nonlinear Optimization, R package version 2023.1.0, (2023)