System of implicit nonconvex variationl inequality problems A projection method approach
Authors
K. R. Kazmi
 Department of Mathematics, Aligarh Muslim University, Aligarh, India.
N. Ahmad
 Department of Mathematics, AlJouf University, P. O. Box 2014, Skaka, Kingdom of Saudi Arabia.
S. H. Rizvi
 Department of Mathematics, Aligarh Muslim University, Aligarh, India.
Abstract
In this paper, we consider a new system of implicit nonconvex variational inequality problems in setting of
proxregular subsets of two different Hilbert spaces. Using projection method, we establish the equivalence
between the system of implicit nonconvex variational inequality problems and a system of relations. Using
this equivalence formulation, we suggest some iterative algorithms for finding the approximate solution of
the system of implicit nonconvex variational inequality problems and its special case. Further, we establish
some theorems for the existence and iterative approximation of the solutions of the system of implicit
nonconvex variational inequality problems and its special case. The results presented in this paper are new
and different form the previously known results for nonconvex variational inequality problems. These results
also generalize, unify and improve the previously known results of this area.
Share and Cite
ISRP Style
K. R. Kazmi, N. Ahmad, S. H. Rizvi, System of implicit nonconvex variationl inequality problems A projection method approach, Journal of Nonlinear Sciences and Applications, 6 (2013), no. 3, 170180
AMA Style
Kazmi K. R., Ahmad N., Rizvi S. H., System of implicit nonconvex variationl inequality problems A projection method approach. J. Nonlinear Sci. Appl. (2013); 6(3):170180
Chicago/Turabian Style
Kazmi, K. R., Ahmad, N., Rizvi, S. H.. "System of implicit nonconvex variationl inequality problems A projection method approach." Journal of Nonlinear Sciences and Applications, 6, no. 3 (2013): 170180
Keywords
 System of implicit nonconvex variational inequality problems
 proxegular set
 projection method
 iterative algorithm.
MSC
References

[1]
M. Alimohammady, J. Balooee, Y. J. Cho, M. Roohi , Iterative algorithms for new class of extended general nonconvex setvalued variational inequalities, Nonlinear Anal. TMA sereies A, 73(12) (2010), 39073923.

[2]
Q. H. Ansari, J.C. Yao, A fixed point theorem and its applications to a system of variational inequalities, Bull. Austral. Math. Soc. , 59 (1999), 433442.

[3]
J. P. Aubin , Mathematical Methods of Game Theory and Economic, NorthHolland, Amsterdam (1982)

[4]
J. Balooee, Y. J. Cho, M. K. Kang , Projection methods and a new system of extended general regularized nonconvex setvalued variational inequalities, J. Appl. Math. Article ID 690648 , 2012 (2012), 18 Pages.

[5]
S. Boralugoda, R. A. Poliquin, Local integration of proxregular functions in Hilbert spaces, J. Convex Anal., 13 (2006), 114146.

[6]
M. Bounkhel, L. Tadj, A. Hamdi , Iterative schemes to solve nonconvex variational problems, J. Inequal. pure Appl. Math., 28(4) (2003), 114.

[7]
Y. J. Cho, X. Qin, Systems of generalized nonlinear variational inequalities and its projection methods, Nonlinear Anal. TMA series A, 69(12) (2003), 44434451.

[8]
F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York (1998)

[9]
F. H. Clarke, R. J. Stern, P. R. Wolenski , Proximal smoothness and the lower \(C^2\) property, J. Convex Anal. , 2 (12) (1995), 117144.

[10]
C. Cohen, F. Chaplais , Nested monotony for variational inequalities over product of spaces and convergence of iterative algorithms, J. Optim. Theory Appl., 59 (1988), 360390.

[11]
M. Ferris, J.S. Pang , Engineering and economics applications of complementarity problems, SIAM Rev. , 39 (1997), 669713.

[12]
Z. He, C. Chen, F. Gu, Viscosity approximation method for nonexpansive nonselfmapping and variational inequality, J. Nonlinear Sci. Appl., 1(3) (2008), 169178.

[13]
G. Kassey, J. Kolumban, System of multivalued variational inequalities, Publ. Math. Debrecen, 56 (2000), 185195.

[14]
K. R. Kazmi, M. I. Bhat, Naeem Ahmed, An iterative algorithm based on Mproximal mappings for a generalized implicit variational inclusions in Banach spaces, J. Comput. Appl. Math. , 233 (2009), 361371.

[15]
K. R. Kazmi, F. A. Khan, Iterative approximation of a unique solution of a system of variationallike inclusions in real quniformly smooth Banach spaces, Nonlinear Anal. TMA series A , 67(3) (2007), 917929.

[16]
K. R. Kazmi, F. A. Khan, M. Shahzad , A system of generalized variational inclusion involving generalized H(.,.)accretive mapping in real quniformly smooth Banach spaces, Appl. Math. Comput. , 217(23) (2011), 9679 9688.

[17]
K. R. Kazmi, F. A. Khan, M. Shahzad, Two step algorithm for solving regularized generalized mixed variational inequality problem, Bull. Korean Math. Soc. , 47 (2010), 675685.

[18]
I. V. Konnov, Relatively monotone variational inequalities over product sets, Oper. Res. Lett. , 28 (2001), 2126.

[19]
H. G. Li, Generalized fuzzy random setvalued mixed variational inclusions involving random nonlinear (\(A_\omega,\eta_\omega\)) accretive mappings in Banach spaces, J. Nonlinear Sci. Appl., 3(1) (2010), 6377.

[20]
A. Moudafi, Projection methods for a system of nonconvex variational inequalities, Nonlinear Anal. TMA series A , 71 (2009), 517520.

[21]
A. Nagurney, Network Economics: A Variational Inequality Approach, Kluwer Academic Publishers, Dordrecht (1993)

[22]
M. A. Noor , Projection methods for nonconvex variational inequalities, Optim. Lett. , 3 (2009), 411418.

[23]
M. A. Noor, E. Alsaid, Iterative methods for general nonconvex variational inequalities, Appl. Comput. Math., 10(2) (2011), 309320.

[24]
M. A. Noor, K. I. Noor, New system of general nonconvex variational inequalities, Appl. Math. ENotes, 10 (2010), 7685.

[25]
J.S. Pang, Asymmetric variational inequalities over product of sets: Applications and iterative methods, Math. Prog. , 31 (1985), 206219.

[26]
R. A. Poliquin, R. T. Rockafellar , Proxregular functions in variational analysis , Trans. American Math. Soc., 348 (1996), 18051838.

[27]
R. U. Verma, Generalized system of relaxed cocoercive variational inequalities and projection methods, J. Optim. Theory Appl., 121(1) (2004), 203210.

[28]
D.J. Wen , Projection methods for a generalized system of nonconvex variational inequalities with different operators, Nonlinear Anal. TMA series A, 73 (2010), 22922297.