Coincidence point results of multivalued weak Ccontractions on metric spaces with a partial order
Authors
Binayak S. Choudhury
 Department of Mathematics, Bengal Engineering and Science University, Shibpur, Howrah711103, West Bengal, India.
N. Metiya
 Department of Mathematics, Bengal Institute of Technology, Kolkata700150, West Bengal, India.
P. Maity
 Department of Mathematics, Bengal Engineering and Science University, Shibpur, Howrah711103, West Bengal, India.
Abstract
In this paper we obtain some coincidence point results of a family of multivalued mappings with a singlevalued
mapping in a complete metric space endowed with a partial order. We use \(\delta\) distance in this paper. A
generalized weak Ccontraction inequality for multivalued functions and \(\delta\)compatibility for certain pairs of
functions are assumed in the theorems. The corresponding singled valued cases are shown to extend a number
of existing results. An example is constructed which shows that the extensions are actual improvements.
Share and Cite
ISRP Style
Binayak S. Choudhury, N. Metiya, P. Maity, Coincidence point results of multivalued weak Ccontractions on metric spaces with a partial order, Journal of Nonlinear Sciences and Applications, 6 (2013), no. 1, 717
AMA Style
Choudhury Binayak S., Metiya N., Maity P., Coincidence point results of multivalued weak Ccontractions on metric spaces with a partial order. J. Nonlinear Sci. Appl. (2013); 6(1):717
Chicago/Turabian Style
Choudhury, Binayak S., Metiya, N., Maity, P.. "Coincidence point results of multivalued weak Ccontractions on metric spaces with a partial order." Journal of Nonlinear Sciences and Applications, 6, no. 1 (2013): 717
Keywords
 Partially ordered set
 multivalued Ccontraction
 \(\delta\) compatible
 control function
 coincidence point.
MSC
References

[1]
M. A. Ahmed, Common fixed point theorems for weakly compatible mappings, Rocky Mountain J. Math. , 33 (2003), 11891203.

[2]
Ya. I. Alber, S. GuerreDelabriere, Principles of weakly contractive maps in Hilbert spaces, in: I. Gohberg, Yu. Lyubich(Eds.), New Results in Operator Theory, in : Advances and Appl. 98, Birkhuser, Basel, (1997), 722.

[3]
I. Altun, D. Turkoglu, Some fixed point theorems for weakly compatible multivalued mappings satisfying an implicit relation, Filomat , 22 (2008), 1321.

[4]
P. Azhdari , Fixed point theorems for the generalized Ccontractions, Appl. Math. Sci. , 3 (2009), 12651273.

[5]
I. Beg, A. R. Butt, Common fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces , Math. Commun, 15 (2010), 6576.

[6]
S. Chandok, Some common fixed point theorems for generalized nonlinear contractive mappings, Comput. Math. Appl. , 62 (2011), 36923699.

[7]
S. K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci., 25 (1972), 727730.

[8]
B. S. Choudhury, Unique fixed point theorem for weak Ccontractive mappings, Kathmandu Univ. J. Sci. Eng. Tech. , 5 (1) (2009), 613.

[9]
B. S. Choudhury, K. Das, A coincidence point result in Menger spaces using a control function , Chaos Solitons Fractals, 42 (2009), 30583063.

[10]
B. S. Choudhury, A. Kundu, (\(\psi,\alpha,\beta\))  Weak contractions in partially ordered metric spaces, Appl. Math. Lett. , 25 (1) (2012), 610.

[11]
P. N. Dutta, B. S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl., Article ID 406368, 2008 (2008), 8 pages.

[12]
B. Fisher , Common fixed points of mappings and setvalued mappings, Rostock Math. Colloq. , 18 (1981), 6977.

[13]
B. Fisher, S. Sessa , Two common fixed point theorems for weakly commuting mappings, Period. Math. Hungar., 20 (1989), 207218.

[14]
M. E. Gordji, H. Baghani, H. Khodaei, M. Ramezani, A generalization of Nadler's fixed point theorem, J. Nonlinear Sci. Appl. , 3(2) (2010), 148151.

[15]
A. A. Harandi, D. O'Regan, Fixed point theorems for setvalued contraction type maps in metric spaces, Fixed Point Theory Appl., Article ID 390183, 2010 (2010), 7 pages.

[16]
J. Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal., 72 (2010), 11881197.

[17]
J. Harjani, B. López, K. Sadarangani, Fixed point theorems for weakly Ccontractive mappings in ordered metric spaces, Comput. Math. Appl. , 61 (2011), 790796.

[18]
G. Jungck, Compatible mappings and common fixed points, Inst. J. Math. Sci. , 9 (1986), 771779.

[19]
G. Jungck, B. E. Rhoades, Some fixed point theorems for compatible maps , Int. J. Math. Sci. , 16 (1993), 417428.

[20]
M. S. Khan, M. Swaleh, S. Sessa, Fixed points theorems by altering distances between the points, Bull. Austral. Math. Soc. , 30 (1984), 19.

[21]
V. Parvaneh, Existence of fixed point for a class of multivalued mappings in complete metric spaces, Appl. Math. Sci., 6 (2012), 981986.

[22]
S. B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math. , 30 (1969), 475488.

[23]
J. J. Nieto, R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order , 22 (2005), 223239.

[24]
A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. , 132 (2004), 14351443.

[25]
B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. , 47(4) (2001), 26832693.

[26]
K. P. R. Sastry, G. V. R. Babu, Some fixed point theorems by altering distances between the points, Indian J. Pure Appl. Math. , 30(6) (1999), 641647.

[27]
W. Shatanawi , Fixed point theorems for nonlinear weakly Ccontractive mappings in metric spaces, Math. Comput. Modelling , 54 (2011), 28162826.

[28]
W. Sintunavarat, P. Kumam, Weak condition for generalized multivalued (\(f,\alpha,\beta\))weak contraction mappings, Appl. Math. Lett. , 24 (2011), 460465.