The elliptic sinhGordon equation in the half plane
Authors
Guenbo Hwang
 Department of Mathematics, Daegu University, Gyeongsan Gyeongbuk 712714, Korea.
Abstract
Boundary value problems for the elliptic sinhGordon equation formulated in the half plane are studied
by applying the socalled Fokas method. The method is a significant extension of the inverse scattering
transform, based on the analysis of the Lax pair formulation and the global relation that involves all known
and unknown boundary values. In this paper, we derive the formal representation of the solution in terms
of the solution of the matrix RiemannHilbert problem uniquely defined by the spectral functions. We also
present the global relation associated with the elliptic sinhGordon equation in the half plane. We in turn
show that given appropriate initial and boundary conditions, the unique solution exists provided that the
boundary values satisfy the global relation. Furthermore, we verify that the linear limit of the solution
coincides with that of the linearized equation known as the modified Helmhotz equation.
Share and Cite
ISRP Style
Guenbo Hwang, The elliptic sinhGordon equation in the half plane, Journal of Nonlinear Sciences and Applications, 8 (2015), no. 2, 163173
AMA Style
Hwang Guenbo, The elliptic sinhGordon equation in the half plane. J. Nonlinear Sci. Appl. (2015); 8(2):163173
Chicago/Turabian Style
Hwang, Guenbo. "The elliptic sinhGordon equation in the half plane." Journal of Nonlinear Sciences and Applications, 8, no. 2 (2015): 163173
Keywords
 Boundary value problems
 elliptic PDEs
 sinhGordon equation
 integrable equation.
MSC
References

[1]
M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge (1991)

[2]
G. Biondini, G. Hwang, Initialboundary value problems for discrete evolution equations: discrete linear Schrödinger and integrable discrete nonlinear Schrödinger equations, Inverse. Problems, 24 (2004), 44 pages.

[3]
G. Biondini, D.Wang, Initialboundaryvalue problems for discrete linear evolution equations, IMA J. Appl. Math., 75 (2010), 968997.

[4]
M. Boiti, J. JP. Leon, F. Pempinelli , Integrable twodimensional generalisation of the sine and sinhGordon equations, Inverse Problems, 3 (1987), 3749.

[5]
P. Deift, X. Zhou , A steepest descent method for oscillatory RiemannHilbert problems, Bull. Amer. Math. Soc., 26 (1992), 119123.

[6]
P. Deift, S. Venakides, X. Zhou, New results in small dispersion KdV by an extension of the steepest descent method for RiemannHilbert problems, Int. Math. Res. Notices, 6 (1997), 286299.

[7]
A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London A, 453 (1997), 14111443.

[8]
A. S. Fokas, On the integrability of certain linear and nonlinear partial differential equations, J. Math. Phys., 41 (2000), 41884237.

[9]
A. S. Fokas, Two dimensional linear PDEs in a convex polygon, Proc. Roy. Soc. London A, 457 (2001), 371393.

[10]
A. S. Fokas, Integrable nonlinear evolution equations on the halfline, Comm. Math. Phys., 230 (2002), 139.

[11]
A. S. Fokas, The generalized DirichlettoNeumann map for certain nonlinear evolution PDEs, Comm. Pure Appl. Math., LVIII (2005), 639670.

[12]
A. S. Fokas, A Unified Approach to Boundary Value Problems, CBMSNSF regional conference series in applied mathematics, SIAM (2008)

[13]
A. S. Fokas, J. Lenells, The unified method: I. Nonlinearizable problems on the halfline, J. Phys. A: Math. Theor., 45 (2012), 195201.

[14]
A. S. Fokas, B. Pelloni , The DirichlettoNemann map for the elliptic sineGordon equation, Nonlinearity, 25 (2012), 10111031.

[15]
G. Hwang , The Fokas method: The Dirichlet to Neumann map for the sineGordon equation, Stud. Appl. Math., 132 (2014), 381406.

[16]
G. Hwang, A perturbative approach for the asymptotic evaluation of the Neumann value corresponding to the Dirichlet datum of a single periodic exponential for the NLS, J. Nonlinear Math. Phys., 21 (2014), 225247.

[17]
G. Hwang, A. S. Fokas, The modified Kortewegde Vries equation on the halfline with a sinewave as Dirichlet datum , J. Nonlinear Math. Phys., 20 (2013), 135157.

[18]
M. Jaworski, D. Kaup , Direct and inverse scattering problem associated with the elliptic sinhGordon equation, Inverse Problems, 6 (1990), 543556 .

[19]
B. Pelloni, D. A. Pinotsis, The elliptic sineGordon equation in a half plane, Nonlinearity, 23 (2010), 7788.