Extended RiemannLiouville fractional derivative operator and its applications

1945
Downloads

2157
Views
Authors
Praveen Agarwal
 Department of Mathematics, Anand International College of Engineering, Jaipur303012, India.
Junesang Choi
 Department of Mathematics, Dongguk University, Gyeongju 780714, Republic of Korea.
R. B. Paris
 School of Computing, Engineering and Applied Mathematics, University of Abertay Dundee, Dundee DD1 1HG, UK.
Abstract
Many authors have introduced and investigated certain extended fractional derivative operators. The main
object of this paper is to give an extension of the RiemannLiouville fractional derivative operator with
the extended Beta function given by Srivastava et al. [22] and investigate its various (potentially) useful
and (presumably) new properties and formulas, for example, integral representations, Mellin transforms,
generating functions, and the extended fractional derivative formulas for some familiar functions.
Share and Cite
ISRP Style
Praveen Agarwal, Junesang Choi, R. B. Paris, Extended RiemannLiouville fractional derivative operator and its applications, Journal of Nonlinear Sciences and Applications, 8 (2015), no. 5, 451466
AMA Style
Agarwal Praveen, Choi Junesang, Paris R. B., Extended RiemannLiouville fractional derivative operator and its applications. J. Nonlinear Sci. Appl. (2015); 8(5):451466
Chicago/Turabian Style
Agarwal, Praveen, Choi, Junesang, Paris, R. B.. "Extended RiemannLiouville fractional derivative operator and its applications." Journal of Nonlinear Sciences and Applications, 8, no. 5 (2015): 451466
Keywords
 Gamma function
 Beta function
 RiemannLiouville fractional derivative
 hypergeometric functions
 fox Hfunction
 generating functions
 Mellin transform
 integral representations.
MSC
References

[1]
R. Almeida, D. F. M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Nonlinear Sci. Numer. Simul., 16 (2011), 14901500.

[2]
L. M. B. C. Campos, On a concept of derivative of complex order with application to special functions, IMA J. Appl. Math., 33 (1984), 109133.

[3]
L. M. B. C. Campos, On rules of derivation with complex order of analytic and branched functions, Portugal. Math., 43 (1985), 347376.

[4]
L. M. B. C. Campos, On a systematic approach to some properties of special functions, IMA J. Appl. Math., 36 (1986), 191206.

[5]
M. A. Chaudhry, S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, Chapman and Hall (CRC Press Company), Boca Raton, London, New York and Washington, D.C. (2001)

[6]
M. A. Chaudhry, A. Qadir, M. Rafique, S. M. Zubair, Extension of Euler’s beta function, J. Comput. Appl. Math., 78 (1997), 1932.

[7]
M. A. Chaudhry, A. Qadir, H. M. Srivastava, R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159 (2004), 589602.

[8]
A. A. Kilbas, M. Saigo, HTransforms: Theory and Applications, Chapman and Hall (CRC Press Company), Boca Raton, London, New York and Washington, D.C. (2004)

[9]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: NorthHolland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam (2006)

[10]
V. Kiryakova , Generalized Fractional Calculus and Applications, Longman & J. Wiley, HarlowNew York (1994)

[11]
C. Li, A. Chen, J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Physics, 230 (2011), 33523368.

[12]
M. J. Luo, G. V. Milovanovic, P. Agarwal , Some results on the extended beta and extended hypergeometric functions, Appl. Math. Comput., 248 (2014), 631651.

[13]
J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 11401153.

[14]
R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 15861593.

[15]
A. M. Mathai, R. K. Saxena, H. J. Haubold, The Hfunction: Theory and applications, Springer, New York (2010)

[16]
A. R. Miller, Remarks on a generalized beta function, J. Comput. Appl. Math., 100 (1998), 2332.

[17]
P. A. Nekrassov, General differentiation, Mat. Sbornik, 14 (1888), 45168.

[18]
T. J. Osler, Leibniz rule for the fractional derivatives and an application to infinite series, SIAM J. Appl. Math., 18 (1970), 658674.

[19]
T. J. Osler, Leibniz rule, the chain rule and Taylor’s theorem for fractional derivatives, Ph.D. thesis, New York University (1970)

[20]
M. A. Özarslan, E. Özergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Model., 52 (2010), 18251833.

[21]
E. Özergin, M. A. Özarslan, A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., 235 (2011), 46014610.

[22]
H. M. Srivastava, P. Agarwal, S. Jain, Generating functions for the generalized Gauss hypergeometric functions, Appl. Math. Comput., (document). , 247 (2014), 348352.

[23]
H. M. Srivastava, J. Choi , Zeta and qZeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York (2012)

[24]
H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto (1984)

[25]
J. Zhao, Positive solutions for a class of qfractional boundary value problems with pLaplacian, J. Nonlinear Sci. Appl., 8 (2015), 442450.