On a nonlinear Hadamard type fractional differential equation with pLaplacian operator and strip condition
Authors
Guotao Wang
 School of Mathematics and Computer Science, Shanxi Normal University, Linfen, Shanxi 041004, P. R. China.
Taoli Wang
 School of Mathematics and Computer Science, Shanxi Normal University, Linfen, Shanxi 041004, P. R. China.
Abstract
Under certain nonlinear growth conditions of the nonlinearity, we investigate the existence of solutions
for a nonlinear Hadamard type fractional differential equation with strip condition and pLaplacian operator.
At the end, two examples are given to illustrate our main results.
Share and Cite
ISRP Style
Guotao Wang, Taoli Wang, On a nonlinear Hadamard type fractional differential equation with pLaplacian operator and strip condition, Journal of Nonlinear Sciences and Applications, 9 (2016), no. 7, 50735081
AMA Style
Wang Guotao, Wang Taoli, On a nonlinear Hadamard type fractional differential equation with pLaplacian operator and strip condition. J. Nonlinear Sci. Appl. (2016); 9(7):50735081
Chicago/Turabian Style
Wang, Guotao, Wang, Taoli. "On a nonlinear Hadamard type fractional differential equation with pLaplacian operator and strip condition." Journal of Nonlinear Sciences and Applications, 9, no. 7 (2016): 50735081
Keywords
 Hadamard fractional differential equations
 strip condition
 pLaplacian operator
 fixed point.
MSC
References

[1]
B. Ahmad, J. J. Nieto, The monotone iterative technique for threepoint secondorder integro differential boundary value problems with pLaplacian, Bound. Value Probl., 2007 (2007), 9 pages

[2]
B. Ahmad, J. J. Nieto, A. Alsaedi, M. ElShahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl., 13 (2012), 599606

[3]
B. Ahmad, S. K. Ntouyas, A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 348360

[4]
B. Ahmad, S. K. Ntouyas, J. Tariboon, A study of mixed Hadamard and RiemannLiouville fractional integro differential inclusions via endpoint theory, Appl. Math. Lett., 52 (2016), 914

[5]
S. Aljoudi, B. Ahmad, J. J. Nieto, A. Alsaedi , A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions, Chaos Solitons Fractals, 91 (2016), 3946

[6]
D. Averna, E. Tornatore , Ordinary \((p_1,..., p_m)\)Laplacian systems with mixed boundary value conditions, Nonlinear Anal. Real World Appl., 28 (2016), 2031

[7]
D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo , Fractional calculus: models and numerical methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, Boston (2012)

[8]
D. Baleanu, O. G. Mustafa, R. P. Agarwal , An existence result for a superlinear fractional differential equation, Appl. Math. Lett., 23 (2010), 11291132

[9]
G. Bonanno, S. Heidarkhani, D. O'Regan, Multiple solutions for a class of Dirichlet quasilinear elliptic systems driven by a (P;Q)Laplacian operator, Dynam. Systems Appl., 20 (2011), 89100

[10]
A. Cabada, G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl., 389 (2012), 403411

[11]
G. Cetin, F. S. Topal , Existence of solutions for fractional four point boundary value problems with pLaplacian operator, J. Comput. Anal. Appl., 19 (2015), 892903

[12]
A. Chadha, D. N. Pandey, Existence results for an impulsive neutral stochastic fractional integrodifferential equation with infinite delay, Nonlinear Anal., 128 (2015), 149175

[13]
T. Chen, W. Liu, Z. Hu , A boundary value problem for fractional differential equation with pLaplacian operator at resonance, Nonlinear Anal., 75 (2012), 32103217

[14]
P. M. de CarvalhoNeto, G. Planas, Mild solutions to the time fractional NavierStokes equations in \(\mathbb{R}^N\), J. Differential Equations, 259 (2015), 29482980

[15]
Y. Ding, Z. Wei, J. Xu, D. O'Regan, Extremal solutions for nonlinear fractional boundary value problems with pLaplacian, J. Comput. Appl. Math., 288 (2015), 151158

[16]
J. Hadamard , Essai sur l'etude des fonctions, donnees par leur developpment de Taylor, J. Math. Pures Appl., 8 (1892), 101186

[17]
Z. Han, H. Lu, C. Zhang , Positive solutions for eigenvalue problems of fractional differential equation with generalized pLaplacian, Appl. Math. Comput., 257 (2015), 526536

[18]
W. Jiang, Solvability of fractional differential equations with pLaplacian at resonance, Appl. Math. Comput., 260 (2015), 4856

[19]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo , Theory and applications of fractional differential equations, North Holland Mathematics Studies, Elsevier Science B.V., Amsterdam (2006)

[20]
V. Lakshmikantham, S. Leela, D. J. Vasundhara, Theory of fractional dynamic systems, Cambridge Academic Publishers, Cambridge (2009)

[21]
L. S. Leibenson, General problem of the movement of a compressible fluid in a porous medium, (Russian), Bull. Acad. Sci. URSS. Sér. Géograph. Géophys., 9 (1945), 710

[22]
C. Li, C. L. Tang, Three solutions for a class of quasilinear elliptic systems involving the (p; q)Laplacian, Nonlinear Anal., 69 (2008), 33223329

[23]
S. Liang, J. Zhang, Existence and uniqueness of positive solutions for integral boundary problems of nonlinear fractional differential equations with pLaplacian operator, Rocky Mountain J. Math., 44 (2014), 953974

[24]
Q. Ma, R. Wang, J. Wang, Y. Ma, Qualitative analysis for solutions of a certain more generalized twodimensional fractional differential system with Hadamard derivative, Appl. Math. Comput., 257 (2015), 436445

[25]
I. Podlubny, Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, Academic Press, Inc., San Diego (1999)

[26]
M. Röeckner, R. Zhu, X. Zhu, Existence and uniqueness of solutions to stochastic functional differential equations in infinite dimensions, Nonlinear Anal., 125 (2015), 358397

[27]
D. R. Smart, Fixed point theorems, Cambridge Tracts in Mathematics, Cambridge University Press, LondonNew York (1974)

[28]
S. Suganya, M. Mallika Arjunan, J. J. Trujillo , Existence results for an impulsive fractional integrodifferential equation with statedependent delay , Appl. Math. Comput., 266 (2015), 5469

[29]
G. Wang, Monotone iterative technique for boundary value problems of a nonlinear fractional differential equation with deviating arguments, J. Comput. Appl. Math., 236 (2012), 24252430

[30]
G. Wang, Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval, Appl. Math. Lett., 47 (2015), 17

[31]
G. Wang, R. P. Agarwal, A. Cabada, Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations, Appl. Math. Lett., 25 (2012), 10191024

[32]
G. Wang, D. Baleanu, L. Zhang, Monotone iterative method for a class of nonlinear fractional differential equations, Fract. Calc. Appl. Anal., 15 (2012), 244252

[33]
Y. Wang, C. Hou, Existence of multiple positive solutions for onedimensional pLaplacian, J. Math. Anal. Appl., 315 (2006), 144153

[34]
J. Wang, Y. Zhang, On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives, Appl. Math. Lett., 39 (2015), 8590

[35]
X. J. Yang, D. Baleanu, H. M. Srivastava, Local fractional integral transforms and their applications , Elsevier/ Academic Press, Amsterdam (2016)

[36]
X. J. Yang, H. M. Srivastava, J. A. Tenreiro Machado, A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Thermal Sci., 20 (2016), 753756

[37]
X. J. Yang, J. A. Tenreiro Machado, J. J. Nieto, A new family of the local fractional PDEs, Fundamenta Informaticae, (accepted),

[38]
X. J. Yang, J. A. Tenreiro Machado, H. M. Srivastava, A new numerical technique for solving the local fractional diffusion equation: twodimensional extended differential transform approach, Appl. Math. Comput., 274 (2016), 143151

[39]
W. Yukunthorn, B. Ahmad, S. K. Ntouyas, J. Tariboon, On CaputoHadamard type fractional impulsive hybrid systems with nonlinear fractional integral conditions, Nonlinear Anal. Hybrid Syst., 19 (2016), 7792

[40]
L. Zhang, B. Ahmad, G. Wang, The existence of an extremal solution to a nonlinear system with the righthanded RiemannLiouville fractional derivative, Appl. Math. Lett., 31 (2014), 16

[41]
L. Zhang, B. Ahmad, G. Wang, Explicit iterations and extremal solutions for fractional differential equations with nonlinear integral boundary conditions, Appl. Math. Comput., 268 (2015), 388392

[42]
L. Zhang, B. Ahmad, G. Wang, Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a halfline, Bull. Aust. Math. Soc., 91 (2015), 116128

[43]
L. Zhang, B. Ahmad, G. Wang, R. P. Agarwal, Nonlinear fractional integrodifferential equations on unbounded domains in a Banach space, J. Comput. Appl. Math., 249 (2013), 5156

[44]
X. Zhang, L. Liu, B. Wiwatanapataphee, Y. Wu, The eigenvalue for a class of singular pLaplacian fractional differential equations involving the RiemannStieltjes integral boundary condition, Appl. Math. Comput., 235 (2015), 412422

[45]
X. Zhang, L. Liu, Y. Wu, The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium, Appl. Math. Lett., 37 (2014), 2633

[46]
Y. Zhou, Basic theory of fractional differential equations, World Scientific Publishing Co. Pte. Ltd., Hackensack (2014)