]>
2016
9
12
ISSN 2008-1898
523
Some integral inequalities of the Hermite--Hadamard type for log-convex functions on co-ordinates
Some integral inequalities of the Hermite--Hadamard type for log-convex functions on co-ordinates
en
en
In the paper, the authors establish some new integral inequalities for log-convex functions on co-ordinates.
These newly-established inequalities are connected with integral inequalities of the Hermite-Hadamard type
for log-convex functions on co-ordinates.
5900
5908
Yu-Mei
Bai
College of Mathematics
Inner Mongolia University for Nationalities
China
baiym2008@sohu.com
Feng
Qi
Department of Mathematics, College of Science
Institute of Mathematics
Tianjin Polytechnic University
Henan Polytechnic University
China
China
qifeng618@gmail.com;qifeng618@hotmail.com
Log-convex functions
co-ordinates
integral inequality
Hermite-Hadamard type.
Article.1.pdf
[
[1]
M. Alomari, M. Darus, On the Hadamard's inequality for log-convex functions on the coordinates, J. Inequal. Appl., 2009 (2009), 1-13
##[2]
S.-P. Bai, F. Qi, S.-H. Wang, Some new integral inequalities of Hermite-Hadamard type for (\(\alpha,m,P\))-convex functions on co-ordinates, J. Appl. Anal. Comput., 6 (2016), 171-178
##[3]
S. S. Dragomir, On the Hadamards inequlality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775-788
##[4]
S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University (2002)
##[5]
P. M. Gill, C. E. M. Pearce, J. Pečarić, Hadamard's inequality for r-convex functions, J. Math. Anal. Appl., 215 (1997), 461-470
##[6]
X.-Y. Guo, F. Qi, B.-Y. Xi, Some new inequalities of Hermite-Hadamard type for geometrically mean convex functions on the co-ordinates, J. Comput. Anal. Appl., 21 (2016), 144-155
##[7]
D.-Y. Hwang, K.-L. Tseng, G.-S. Yang, Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane, Taiwanese J. Math., 11 (2007), 63-73
##[8]
M. Klaričić Bakula, J. Pečarić, On the Jensen's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 10 (2006), 1271-1292
##[9]
M. E. Özdemir, A. O. Akdemir, H. Kavurmacı, On the Simpsons inequality for co-ordinated convex functions, Turkish J. Anal. Number Theory, 2 (2014), 165-169
##[10]
M. E. Özdemir, A. O. Akdemir, Ç . Yıldız, On co-ordinated quasi-convex functions, Czechoslovak Math. J., 62 (2012), 889-900
##[11]
M. E. Özdemir, E. Set, M. Z. Sarikaya, Some new Hadamard type inequalities for co-ordinated m-convex and (\(\alpha,m\))-convex functions, Hacet. J. Math. Stat., 40 (2011), 219-229
##[12]
M. E. Özdemir, Ç . Yıldız, A. O. Akdemir, On some new Hadamard-type inequalities for co-ordinated quasi-convex functions, Hacet. J. Math. Stat., 41 (2012), 697-707
##[13]
F. Qi, B.-Y. Xi, Some integral inequalities of Simpson type for \(GA-\varepsilon\)-convex functions, Georgian Math. J., 20 (2013), 775-788
##[14]
M. Z. Sarikaya, On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integral Transforms Spec. Funct., 25 (2014), 134-147
##[15]
M. Z. Sarikaya, Some inequalities for differentiable coordinated convex mappings, Asian-Eur. J. Math., 8 (2015), 1-21
##[16]
M. Z. Sarikaya, H. Budak, H. Yaldiz, Čebyševtype inequalities for co-ordinated convex functions, Pure Appl. Math. Lett., 2 (2014), 36-40
##[17]
M. Z. Sarikaya, H. Budak, H. Yaldiz, Some new Ostrowski type inequalities for co-ordinated convex functions, Turkish J. Anal. Number Theory, 2 (2014), 176-182
##[18]
M. Z. Sarikaya, E. Set, M. E. Ozdemir, S. S. Dragomir, New some Hadamard's type inequalities for co-ordinated convex functions, Tamsui Oxf. J. Inf. Math. Sci., 28 (2012), 137-152
##[19]
E. Set, M. Z. Sarikaya, A. O. Akdemir, Hadamard type inequalities for \(\varphi\)-convex functions on co-ordinates, Tbilisi Math. J., 7 (2014), 51-60
##[20]
E. Set, M. Z. Sarikaya, H. Ögülmüş, Some new inequalities of Hermite-Hadamard type for h-convex functions on the co-ordinates via fractional integrals, Facta Univ. Ser. Math. Inform., 29 (2014), 397-414
##[21]
S.-H. Wang, F. Qi, Hermite-Hadamard type inequalities for s-convex functions via Riemann-Liouville fractional integrals, J. Comput. Anal. Appl., 22 (2017), 1124-1134
##[22]
Y. Wang, B.-Y. Xi, F. Qi, Integral inequalities of Hermite-Hadamard type for functions whose derivatives are strongly \(\alpha\)-preinvex, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 32 (2016), 79-87
##[23]
Y. Wu, F. Qi,, On some Hermite-Hadamard type inequalities for (s;QC)-convex functions, SpringerPlus, 5 (2016), 1-13
##[24]
B.-Y. Xi, F. Qi, Integral inequalities of Simpson type for logarithmically convex functions, Adv. Stud. Contemp. Math. (Kyungshang), 23 (2013), 559-566
##[25]
J. Zhang, F. Qi, G.-C. Xu, Z.-L. Pei, Hermite-Hadamard type inequalities for n-times differentiable and geometrically quasi-convex functions, SpringerPlus, 5 (2016), 1-6
]