Important inequalities for preinvex functions
-
3180
Downloads
-
3757
Views
Authors
Zlatko Pavic
- Mechanical Engineering Faculty in Slavonski Brod, University of Osijek, Slavonski Brod, 35000, Croatia.
Shanhe Wu
- Department of Mathematics, Longyan University, Longyan, Fujian, 364012, P. R. China.
Vedran Novoselac
- Mechanical Engineering Faculty in Slavonski Brod, University of Osijek, Slavonski Brod, 35000, Croatia.
Abstract
The paper deals with fundamental inequalities for preinvex functions. The result relating to preinvex
functions on the invex set that satisfies condition C shows that such functions are convex on every generated
line segment. As an effect of that convexity, the paper provides symmetric forms of the most important
inequalities which can be applied to preinvex functions.
Share and Cite
ISRP Style
Zlatko Pavic, Shanhe Wu, Vedran Novoselac, Important inequalities for preinvex functions, Journal of Nonlinear Sciences and Applications, 9 (2016), no. 6, 3570--3579
AMA Style
Pavic Zlatko, Wu Shanhe, Novoselac Vedran, Important inequalities for preinvex functions. J. Nonlinear Sci. Appl. (2016); 9(6):3570--3579
Chicago/Turabian Style
Pavic, Zlatko, Wu, Shanhe, Novoselac, Vedran. "Important inequalities for preinvex functions." Journal of Nonlinear Sciences and Applications, 9, no. 6 (2016): 3570--3579
Keywords
- Preinvex function
- convex function
- inequality.
MSC
References
-
[1]
A. Barani, A. G. Ghazanfari, S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex , J. Inequal. Appl., 2012 (2012), 9 pages.
-
[2]
J. Hadamard , Etude sur les propriétés des fonctions entières et en particulier d'une fonction considerée par Riemann , J. Math. Pures Appl., 58 (1893), 171-215.
-
[3]
Ch. Hermite, Sur deux limites d'une intégrale définie, Mathesis, 3 (1883), 82 pages.
-
[4]
I. Iscan , Hermite-Hadamard's inequalities for preinvex functions via fractional integrals and related fractional inequalities, American J. Math. Anal., 1 (2013), 33-38.
-
[5]
I. Iscan, S. Wu , Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237-244.
-
[6]
J. L. W. V. Jensen , Om konvekse Funktioner og Uligheder mellem Middelvrdier, Nyt Tidsskr. Math., 16 (1905), 49-68.
-
[7]
A. McD. Mercer, A variant of Jensen's inequality , J. Inequal. Pure Appl. Math., 4 (2003), 2 pages.
-
[8]
S. R. Mohan, S. K. Neogy , On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901-908.
-
[9]
C. P. Niculescu, L. E. Persson, Old and new on the Hermite-Hadamard inequality, Real Anal. Exchange, 29 (2003), 663-685.
-
[10]
T. Weir, V. Jeyakumar, A class of nonconvex functions and mathematical programming, Bull. Austral. Math. Soc., 38 (1988), 177-189.
-
[11]
T. Weir, B. Mond , Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29-38.
-
[12]
S. Wu, On the weighted generalization of the Hermite-Hadamard inequality and its applications, Rocky Mountain J. Math., 39 (2009), 1741-1749.
-
[13]
S. Wu, L. Debnath , Inequalities for convex sequences and their applications, Comput. Math. Appl., 54 (2007), 525-534.
-
[14]
S. Wu, B. Sroysang, J.-S. Xie, Y. M. Chu , Parametrized inequality of Hermite-Hadamard type for functions whose third derivative absolute values are quasi-convex, SpringerPlus, 2015 (2015), 9 pages.
-
[15]
X. M. Yang, D. Li, On properties of preinvex functions, J. Math. Anal. Appl., 256 (2001), 229-241.