Viscosity approximation methods for hierarchical optimization problems of multivalued nonexpansive mappings in CAT(0) spaces
-
1658
Downloads
-
2300
Views
Authors
Jinhua Zhu
- College of Mathematics, Yibin University, Yibin, Sichuan, 644007, China.
Shih-Sen Chang
- Center for General Education, China Medical University, Taichung, 40402, Taiwan.
Min Liu
- College of Mathematics, Yibin University, Yibin, Sichuan, 644007, China.
Abstract
The purpose of this paper is to prove some strong convergence theorems for hierarchical optimization
problems of multivalued nonexpansive mappings in CAT(0) spaces by using the viscosity approximation
method. Our results generalize the results of [X.-D. Liu, S.-S. Chang, J. Inequal. Appl., 2013 (2013), 14
pages], [R. Wangkeeree, P. Preechasilp, J. Inequal. Appl., 2013 (2013), 15 pages], and many others. Some
related results in R-trees are also given.
Share and Cite
ISRP Style
Jinhua Zhu, Shih-Sen Chang, Min Liu, Viscosity approximation methods for hierarchical optimization problems of multivalued nonexpansive mappings in CAT(0) spaces, Journal of Nonlinear Sciences and Applications, 9 (2016), no. 10, 5521--5535
AMA Style
Zhu Jinhua, Chang Shih-Sen, Liu Min, Viscosity approximation methods for hierarchical optimization problems of multivalued nonexpansive mappings in CAT(0) spaces. J. Nonlinear Sci. Appl. (2016); 9(10):5521--5535
Chicago/Turabian Style
Zhu, Jinhua, Chang, Shih-Sen, Liu, Min. "Viscosity approximation methods for hierarchical optimization problems of multivalued nonexpansive mappings in CAT(0) spaces." Journal of Nonlinear Sciences and Applications, 9, no. 10 (2016): 5521--5535
Keywords
- Viscosity approximation method
- fixed point
- variational inequality
- hierarchical optimization problems
- multivalued nonexpansive mapping
- CAT(0) space.
MSC
References
-
[1]
B. Ahmadi Kakavandi, Weak topologies in complete CAT(0) metric spaces, Proc. Amer. Math. Soc., 141 (2013), 1029--1039
-
[2]
A. G. Aksoy, M. A. Khamsi, A selection theorem in metric trees, Proc. Amer. Math. Soc., 134 (2006), 2957--2966
-
[3]
I. D. Berg, I. G. Nikolaev, Quasilinearization and curvature of Aleksandrov spaces, Geom. Dedicata, 133 (2008), 195--218
-
[4]
M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin (1999)
-
[5]
K. S. Brown, Buildings, Springer-Verlag, New York (1989)
-
[6]
D. Burago, Y. Burago, S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, American Mathematical Society, Providence (2001)
-
[7]
P. Chaoha, A. Phon-on, A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl., 320 (2006), 983--987
-
[8]
S. Dhompongsa, A. Kaewkhao, B. Panyanak, Browder's convergence theorem for multivalued mappings without endpoint condition, Topology Appl., 159 (2012), 2757--2763
-
[9]
S. Dhompongsa, A. Kaewkhao, B. Panyanak, On Kirk's strong convergence theorem for multivalued nonexpansive mappings on CAT(0) spaces, Nonlinear Anal., 75 (2012), 459--468
-
[10]
S. Dhompongsa, W. A. Kirk, B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal., 8 (2007), 35--45
-
[11]
S. Dhompongsa, W. A. Kirk, B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal., 65 (2006), 762--772
-
[12]
S. Dhompongsa, B. Panyanak, On \(\Delta\)-convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56 (2008), 2572--2579
-
[13]
B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957--961
-
[14]
M. A. Khamsi, W. A. Kirk, C. Martinez Yáñez, Fixed point and selection theorems in hyperconvex spaces, Proc. Amer. Math. Soc., 128 (2000), 3275--3283
-
[15]
W. A. Kirk, Geodesic geometry and fixed point theory, II, International Conference on Fixed Point Theory and Applications, Yokohama Publ., Yokohama, 2004 (2004), 113-142
-
[16]
W. A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68 (2008), 3689--3696
-
[17]
P. Kumam, G. S. Saluja, H. K. Nashine, Convergence of modified S-iteration process for two asymptotically nonexpansive mappings in the intermediate sense in CAT(0) spaces, J. Inequal. Appl., 2014 (2014), 15 pages
-
[18]
X.-D. Liu, S.-S. Chang, Viscosity approximation methods for hierarchical optimization problems in CAT(0) spaces, J. Inequal. Appl., 2013 (2013), 14 pages
-
[19]
J. Markin, Fixed points for generalized nonexpansive mappings in R-trees, Comput. Math. Appl., 62 (2011), 4614--4618
-
[20]
A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46--55
-
[21]
Jr. S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1968), 475--488
-
[22]
P. Saipara, P. Chaipunya, Y. J. Cho, P. Kumam, On strong and \(\Delta\)-convergence of modified S-iteration for uniformly continuous total asymptotically nonexpansive mappings in \(CAT(\kappa)\) spaces, J. Nonlinear Sci. Appl., 8 (2015), 965--975
-
[23]
K. Samanmit, B. Panyanak, On multivalued nonexpansive mappings in R-trees, J. Appl. Math., 2012 (2012), 13 pages
-
[24]
N. Shioji, W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 125 (1997), 3641--3645
-
[25]
R. Wangkeeree, P. Preechasilp, Viscosity approximation methods for nonexpansive mappings in CAT(0) spaces, J. Inequal. Appl., 2013 (2013), 15 pages
-
[26]
H.-K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl., 116 (2003), 659--678