Generalized Srivastava's triple hypergeometric functions and their associated properties
Authors
Junesang Choi
 Department of Mathematics, Dongguk University, Gyeongju 38066, Republic of Korea.
Rakesh Kumar Parmar
 Department of Mathematics, Government College of Engineering and Technology, Bikaner 334004, Rajasthan, India.
Abstract
The main object of this paper is to introduce generalized Srivastava’s triple hypergeometric functions by using the generalized
Pochhammer symbol and investigate certain properties, for example, their various integral representations, derivative
formulas and recurrence relations. Various (known or new) special cases and consequences of the results presented here are also
considered.
Share and Cite
ISRP Style
Junesang Choi, Rakesh Kumar Parmar, Generalized Srivastava's triple hypergeometric functions and their associated properties, Journal of Nonlinear Sciences and Applications, 10 (2017), no. 2, 817827
AMA Style
Choi Junesang, Parmar Rakesh Kumar, Generalized Srivastava's triple hypergeometric functions and their associated properties. J. Nonlinear Sci. Appl. (2017); 10(2):817827
Chicago/Turabian Style
Choi, Junesang, Parmar, Rakesh Kumar. "Generalized Srivastava's triple hypergeometric functions and their associated properties." Journal of Nonlinear Sciences and Applications, 10, no. 2 (2017): 817827
Keywords
 Gamma function
 beta function
 generalized Pochhammer symbol
 generalized hypergeometric function
 extended Appell functions
 generalized Srivastava’s triple hypergeometric functions
 Whittaker function
 Bessel and modified Bessel functions.
MSC
 33B15
 33B20
 33C05
 33C15
 33C20
 33B99
 33C99
 60B99
References

[1]
M. A. Chaudhry, S. M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55 (1994), 99–124.

[2]
M. A. Chaudhry, S. M. Zubair, On a class of incomplete gamma functions with applications, Chapman & Hall/CRC, Boca Raton, FL (2002)

[3]
J.S. Choi, R. K. Parmar, P. Chopra , Extended MittagLeffler function and associated fractional calculus operators, Georgian Math. J., (2017), (In press).

[4]
J.S. Choi, R. K. Parmar, T. K. Pogány, Mathieutype series built by (p, q)extended Gaussian hypergeometric function, ArXiv , 2016 (2016 ), 9 pages.

[5]
J.S. Choi, A. K. Rathie, R. K. Parmar, Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Math. J., 36 (2014), 357–385.

[6]
A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Vols. I, II, Based, in part, on notes left by Harry Bateman. McGrawHill Book Company, Inc., New YorkTorontoLondon (1953)

[7]
Y. L. Luke, Mathematical functions and their approximations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New YorkLondon (1975)

[8]
W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Third enlarged edition, Die Grundlehren der mathematischen Wissenschaften, Band 52 SpringerVerlag New York, Inc., New York (1966)

[9]
F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (Eds.), NIST handbook of mathematical functions , [With 1 CDROM (Windows, Macintosh and UNIX)], US Department of Commerce, National Institute of Standards and Technology, Washington, DC, (2010); Cambridge University Press, Cambridge, London and New York (2010)

[10]
R. K. Parmar, Extended \(\tau\)hypergeometric functions and associated properties, C. R. Math. Acad. Sci. Paris, 353 (2015), 421–426.

[11]
R. K. Parmar, T. K. Pogány, Extended Srivastava’s triple hypergeometric \(H_{A,p,q}\) function and related bounding inequalities, J. Contemp. Math. Anal., (In press). (2016)

[12]
T. K. Pogány, R. K. Parmar, On pextended Mathieu series, ArXiv, 2016 (2016 ), 8 pages.

[13]
E. D. Rainville, Special functions, Reprint of 1960 first edition, Chelsea Publishing Co., Bronx, N.Y. (1971)

[14]
L. J. Slater, Confluent hypergeometric functions, Cambridge University Press, New York (1960)

[15]
L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge (1966)

[16]
H. M. Srivastava, Hypergeometric functions of three variables, Gadot nita , 15 (1964), 97–108.

[17]
H. M. Srivastava , On transformations of certain hypergeometric functions of three variables, Publ. Math. Debrecen, 12 (1965), 65–74.

[18]
H. M. Srivastava, On the reducibility of certain hypergeometric functions, Univ. Nac. Tucumn Rev. Ser. A, 16 (1966), 7–14.

[19]
H.M. Srivastava, Relations between functions contiguous to certain hypergeometric functions of three variables, Proc. Nat. Acad. Sci. India Sect. A, 36 (1966), 377–385.

[20]
H. M. Srivastava, Some integrals representing triple hypergeometric functions, Rend. Circ. Mat. Palermo, 16 (1967), 99–115.

[21]
R. Srivastava, Some generalizations of Pochhammer’s symbol and their associated families of hypergeometric functions and hypergeometric polynomials, Appl. Math. Inf. Sci., 7 (2013), 2195–2206.

[22]
R. Srivastava, Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions, Appl. Math. Comput., 243 (2014), 132–137.

[23]
H. M. Srivastava, A. Çetinkaya, ˙I. Onur Kıymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput., 226 (2014), 484–491.

[24]
R. Srivastava, N. E. Cho , Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials, Appl. Math. Comput., 234 (2014), 277–285.

[25]
H. M. Srivastava, J. Choi, Zeta and qZeta functions and associated series and integrals, Elsevier, Inc., Amsterdam (2012)

[26]
H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York (1985)

[27]
H. M. Srivastava, H. L. Manocha, A treatise on generating functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York (1984)

[28]
H. M. Srivastava, R. K. Parmar, P. Chopra, A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions, Axioms, 1 (2012), 238–258.

[29]
H. M. Srivastava, R. K. Parmar, M. M. Joshi, Extended Lauricella and Appell functions and their associated properties, Adv. Stud. Contemp. Math., 25 (2015), 151–165.