# The method of almost convergence with operator of the form fractional order and applications

Volume 10, Issue 2, pp 828--842
Publication Date: February 20, 2017 Submission Date: March 02, 2016
• 1087 Views

### Authors

Murat Kirişci - Department of Mathematical Education, Hasan Ali Yücel Education Faculty, Istanbul University, Vefa, 34470, Fatih, Istanbul, Turkey. Uğur Kadak - Department of Mathematics, Gazi University, Ankara, 06500, Turkey.

### Abstract

The purpose of this paper is twofold. First, basic concepts such as Gamma function, almost convergence, fractional order difference operator and sequence spaces are given as a survey character. Thus, the current knowledge about those concepts are presented. Second, we construct the almost convergent spaces with fractional order difference operator and compute dual spaces which help us in the characterization of matrix mappings. After we characterize to the matrix transformations, we give some examples. In this paper, the notation $\Gamma(n)$ will be shown the Gamma function. For $n\not\in \{0,-1,-2,...\}$, Gamma function is defined by an improper integral $\Gamma(n)=\int^\infty_0 e^{-t}t^{n-1}dt$ .

### Share and Cite

##### ISRP Style

Murat Kirişci, Uğur Kadak, The method of almost convergence with operator of the form fractional order and applications, Journal of Nonlinear Sciences and Applications, 10 (2017), no. 2, 828--842

##### AMA Style

Kirişci Murat, Kadak Uğur, The method of almost convergence with operator of the form fractional order and applications. J. Nonlinear Sci. Appl. (2017); 10(2):828--842

##### Chicago/Turabian Style

Kirişci, Murat, Kadak, Uğur. "The method of almost convergence with operator of the form fractional order and applications." Journal of Nonlinear Sciences and Applications, 10, no. 2 (2017): 828--842

### Keywords

• Gamma function
• almost convergence
• fractional order difference operator
• matrix domain
• dual spaces.

•  47A15
•  33B15
•  46A45
•  46A35
•  46B45
•  40A05

### References

• [1] B. Altay, F. Başar, Some Euler sequence spaces of nonabsolute type , translated from Ukraïn. Mat. Zh., 57 (2005), 3–17, Ukrainian Math. J., 57 (2005), 1–17.

• [2] B. Altay, F. Başar, Certain topological properties and duals of the domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., 336 (2007), 632–645.

• [3] B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces $l_p$ and $l_\infty$, I, Inform. Sci., 176 (2006), 1450–1462.

• [4] A. F. Andersen, Comparison Theorems in the Theory of Cesaro Summability, Proc. London Math. Soc., 2 (1928), 39–71.

• [5] A. F. Andersen, Summation of nonintegral order, (Danish) Mat. Tidsskr. B., 1946 (1946), 33–52.

• [6] A. F. Andersen, On difference transformations, (Danish) Mat. Tidsskr. B., 1950 (1950 ), 110–122.

• [7] P. Baliarsingh , Some new difference sequence spaces of fractional order and their dual spaces, Appl. Math. Comput., 219 (2013), 9737–9742.

• [8] P. Baliarsingh, S. Dutta, A unifying approach to the difference operators and their applications, Bol. Soc. Parana. Mat., 33 (2015), 49–57.

• [9] P. Baliarsingh, S. Dutta, On the classes of fractional order difference sequence spaces and their matrix transformations, App. Math. Comput., 250 (2015), 665–674.

• [10] F. Başar, Strongly-conservative sequence-to-series matrix transformations, Erc. Uni. Fen Bil. Derg., 5 (1989), 888–893.

• [11] F. Başar, Summability theory and its applications, With a foreword by M. Mursaleen, Edited by Rifat Çolak, Bentham Science Publishers, Ltd., Oak Park, IL (2012)

• [12] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, translated from Ukraïn. Mat. Zh., 55 (2003), 108–118, Ukranian Math. J., 55 (2003), 136–147.

• [13] F. Başar, M. Kirişci, Almost convergence and generalized difference matrix, Comput. Math. Appl., 61 (2011), 602–611.

• [14] F. Başar, I. Solak, Almost-coercive matrix transformations, Rend. Mat. Appl., 11 (1991), 249–256.

• [15] L. S. Bosanquet, Note on the Bohr-Hardy theorem, J. London Math. Soc., 17 (1942), 166–173.

• [16] M. Candan, Domain of the double sequential band matrix in the classical sequence spaces, J. Inequal. Appl., 2012 (2012), 15 pages.

• [17] M. Candan, Almost convergence and double sequential band matrix, Acta Math. Sci. Ser. B Engl. Ed., 34 (2014), 354–366.

• [18] M. Candan, A new sequence space isomorphic to the space $\ell(p)$ and compact operators, J. Math. Comput. Sci., 4 (2014), 306–334.

• [19] M. Candan, Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Difference Equ., 2014 (2014 ), 18 pages.

• [20] M. Candan, K. Kayaduman, Almost convergent sequence space derived by generalized Fibonacci matrix and Fibonacci core, British J. Math. Comput. Sci., 7 (2015), 150–167.

• [21] S. Chapman, On Non-Integral Orders of Summability of Series and Integrals, Proc. London Math. Soc., 2 (1911), 369–409.

• [22] S. Demiriz, O. Duyar, On some new difference sequence spaces of fractional order, Int. J. Mod. Math. Sci., 13 (2015), 1–11.

• [23] S. Demiriz, E. E. Kara, M. Başarır, On the Fibonacci almost convergent sequence space and Fibonacci core, Kyungpook Math. J., 55 (2015), 355–372.

• [24] J. P. Duran , Infinite matrices and almost-convergence, Math. Z., 128 (1972), 75–83.

• [25] S. Dutta, P. Baliarsingh, A note on paranormed difference sequence spaces of fractional order and their matrix transformations, J. Egyptian Math. Soc., 22 (2014), 249–253.

• [26] C. Eizen, G. Laush, Infinite matrices and almost convergence, Math. Japon, 14 (1969), 137–143.

• [27] U. Kadak, Generalized lacunary statistical difference sequence spaces of fractional order, Int. J. Math. Math. Sci., 2015 (2015 ), 6 pages.

• [28] U. Kadak, Weighted statistical convergence based on generalized difference operator involving (p, q)-gamma function and its applications to approximation theorems, J. Math. Anal. Appl., 448 (2017), 1633–1650.

• [29] U. Kadak, P. Baliarsingh , On certain Euler difference sequence spaces of fractional order and related dual properties, J. Nonlinear Sci. Appl., 8 (2015), 997–1004.

• [30] U. Kadak, N. L. Braha, H. M. Srivastava, Statistical weighted B-summability and its applications to approximation theorems, Appl. Math. Comput., 302 (2017), 80–96.

• [31] E. E. Kara, M. İlkhan, On some Banach sequence spaces derived by a new band matrix, British J. Math. Comput. Sci., 9 (2015), 141–159.

• [32] E. E. Kara, M. İlkhan, Some properties of generalized Fibonacci sequence spaces, Linear Multilinear Algebra, 64 (2016), 2208–2223.

• [33] A. Karaisa, F. Özger, Almost difference sequence spaces derived by using a generalized weighted mean, J. Comput. Anal. Appl., 19 (2015), 27–38.

• [34] A. Karaisa, F. Özger, On almost convergence and difference sequence spaces of order m with core theorems, Gen. Math. Notes, 26 (2015), 102–125.

• [35] K. Kayaduman, M. Şengönül, The spaces of Cesáro almost convergent sequences and core theorems, Acta Math. Sci. Ser. B Engl. Ed., 32 (2012), 2265–2278.

• [36] J.P. King, Almost summable sequences, Proc. Amer. Math. Soc., 17 (1966), 1219–1225.

• [37] M. Kirişci, Almost convergence and generalized weighted mean, First International Conference on Analysis and Applied Mathematics, AIP Conf. Proc., 1470 (2012), 191–194.

• [38] M. Kirişci, On the spaces of Euler almost null and Euler almost convergent sequences, Commun. Fac. Sci. Univ. Ank. Sr. A1 Math. Stat., 62 (2013), 85–100.

• [39] M. Kirişci, Almost convergence and generalized weighted mean II, J. Inequal. Appl., 2014 (2014), 13 pages.

• [40] M. Kirişci, A note on the some geometric properties of the sequence spaces defined by Taylor method, ArXiv, 2016 (2016 ), 11 pages.

• [41] B. Kuttner, On differences of fractional order, Proc. London Math. Soc., 7 (1975), 453–466.

• [42] B. Kuttner, A limitation theorem for differences of fractional order, J. London Math. Soc., 43 (1968), 758–762.

• [43] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167–190.

• [44] E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, 4th Symposium on Mathematical Analysis and Its Applications, Arane. lovac, (1997), Mat. Vesnik, 49 (1997), 187–196.

• [45] H. I. Miller, C. Orhan, On almost convergent and statistically convergent subsequences, Acta Math. Hungar., 93 (2001), 135–151.

• [46] M. Mursaleen, On A-invariant mean and A-almost convergence, Anal. Math., 37 (2011), 173–180.

• [47] P. N. Ng, P. Y. Lee, Cesàro sequence spaces of non-absolute type, Comment. Math. Prace Mat., 20 (1977/78), 429–433.

• [48] I. I. Ogieveckiĭ, On the summability of series by Borel’s method of fractional order, (Ukrainian) Dopovidi Akad. Nauk Ukraïn. RSR, 1959 (1959 ), 815–818.

• [49] I. I. Ogieveckiĭ, On the theory of summability of series by Borel’s method of fractional order, II, (Ukrainian) Dopovidi Akad. Nauk Ukraïn. RSR, 1962 (1962 ), 719–722.

• [50] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36 (1972), 104–110.

• [51] J. A. Siddiqi, Infinite matrices summing every almost periodic sequence, Pacific J. Math., 39 (1971), 235–251.

• [52] A. Sönmez, Almost convergence and triple band matrix, Math. Comput. Model., 57 (2012), 2393–2402.

• [53] A. Wilansky, Summability through functional analysis, North-Holland Mathematics Studies, Notas de Matemtica [Mathematical Notes], North-Holland Publishing Co., Amsterdam (1984)