Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel
-
7143
Downloads
-
8916
Views
Authors
Thabet Abdeljawad
- Department of Mathematics and Physical Sciences, Prince Sultan University, P. O. Box 66833, 11586 Riyadh, Saudi Arabia.
Dumitru Baleanu
- Department of Mathematics, Cankaya University, 06530 Ankara, Turkey.
- Institute of Space Sciences, Magurele-Bucharest, Romania.
Abstract
In this manuscript we define the right fractional derivative and its corresponding right fractional integral for the newly
suggested nonlocal fractional derivative with Mittag-Leffler kernel. Then, we obtain the related integration by parts formula.
We use the Q-operator to confirm our results. The related Euler-Lagrange equations are reported and one illustrative example
is discussed.
Share and Cite
ISRP Style
Thabet Abdeljawad, Dumitru Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, Journal of Nonlinear Sciences and Applications, 10 (2017), no. 3, 1098--1107
AMA Style
Abdeljawad Thabet, Baleanu Dumitru, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. (2017); 10(3):1098--1107
Chicago/Turabian Style
Abdeljawad, Thabet, Baleanu, Dumitru. "Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel." Journal of Nonlinear Sciences and Applications, 10, no. 3 (2017): 1098--1107
Keywords
- Fractional calculus
- Mittag-Leffler function
- fractional integration by parts
- fractional Euler-Lagrange equations.
MSC
References
-
[1]
T. Abdeljawad, Dual identities in fractional difference calculus within Riemann, Adv. Difference Equ., 2013 (2013), 16 pages.
-
[2]
T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013), 12 pages.
-
[3]
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66.
-
[4]
T. Abdeljawad, F. M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal., 2012 (2012 ), 13 pages.
-
[5]
T. Abdeljawad, D. Baleanu, Fractional differences and integration by parts, J. Comput. Anal. Appl., 13 (2011), 574–582.
-
[6]
T. Abdeljawad, D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Difference Equ., 2016 (2016), 18 pages.
-
[7]
O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl., 272 (2002), 368–379.
-
[8]
B. S. T. Alkahtani, Chua’s circuit model with Atangana-Baleanu derivative with fractional order, Chaos Solitons Fractals, 89 (2016), 547–551.
-
[9]
A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769.
-
[10]
A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447–457.
-
[11]
D. Baleanu, J. J. Trujillo, On exact solutions of a class of fractional Euler-Lagrange equations, Nonlinear Dynam., 52 (2008), 331–335.
-
[12]
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
-
[13]
F. Gao, X.-J. Yang, Fractional Maxwell fluid with fractional derivative without singular kernel, Therm. Sci., 20 (2016), 871–877.
-
[14]
R. Hilfer , Applications of fractional calculus in physics, World Sci. Publ., Singapore (2000)
-
[15]
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70.
-
[16]
A. A. Kilbas, M. Saigo, K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms Spec. Funct., 15 (2004), 31–49.
-
[17]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam (2006)
-
[18]
C. F. Lorenzo, T. T. Hartley, Variable order and distributed order fractional operators, Fractional order calculus and its applications, Nonlinear Dynam., 29 (2002), 57–98.
-
[19]
J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92.
-
[20]
J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153.
-
[21]
R. L. Magin, Fractional calculus in bioengineering, Begell House Publishers Inc., CT (2006)
-
[22]
T. Maraaba, D. Baleanu, F. Jarad, Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives, J. Math. Phys., 49 (2008), 11 pages.
-
[23]
I. Podlubny, Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA (1999)
-
[24]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Theory and applications, Edited and with a foreword by S. M. Nikol’ski˘ı, Translated from the 1987 Russian original, Revised by the authors, Gordon and Breach Science Publishers, Yverdon (1993)
-
[25]
X.-J. Yang, D. Baleanu, H. M. Srivastava, Local fractional integral transforms and their applications, Elsevier/Academic Press, Amsterdam (2005)
-
[26]
A.-M. Yang, Y. Han, J. Li, W.-X. Liu, On steady heat flow problem involving Yang-Srivastava-Machado fractional derivative without singular kernel, Therm. Sci., 20 (2016), 717–723.
-
[27]
X.-J. Yang, H. M. Srivastava, J. A. Tenreiro Machado, A new fractional derivative without singular kernel: application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753–756.