An efficient computational technique for local fractional heat conduction equations in fractal media
-
2458
Downloads
-
3437
Views
Authors
Duan Zhao
- IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou 221008, China.
- The National and Local Joint Engineering Laboratory of Internet Application Technology on Mine , Xuzhou 221008, China.
Jagdev Singh
- Department of Mathematics, JECRC University, Jaipur-303905, Rajasthan, India.
Devendra Kumar
- Department of Mathematics, JECRC University, Jaipur-303905, Rajasthan, India.
Sushila Rathore
- Department of Physics, Vivekananda Global University, Jaipur-303012, Rajasthan, India.
Xiao-Jun Yang
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China.
- State Key, Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, 221116, China.
Abstract
The key aim of this article is to present an efficient numerical algorithm based on local fractional homotopy perturbation
Sumudu transform technique for solving local fractional heat-conduction equations in fractal media. The proposed technique
is an effective combination of local fractional homotopy perturbation method (LFHPM) and local fractional Sumudu transform
algorithm. The results obtained by using the suggested scheme show that the approach is straightforward to apply and very
accurate.
Share and Cite
ISRP Style
Duan Zhao, Jagdev Singh, Devendra Kumar, Sushila Rathore, Xiao-Jun Yang, An efficient computational technique for local fractional heat conduction equations in fractal media, Journal of Nonlinear Sciences and Applications, 10 (2017), no. 4, 1478--1486
AMA Style
Zhao Duan, Singh Jagdev, Kumar Devendra, Rathore Sushila, Yang Xiao-Jun, An efficient computational technique for local fractional heat conduction equations in fractal media. J. Nonlinear Sci. Appl. (2017); 10(4):1478--1486
Chicago/Turabian Style
Zhao, Duan, Singh, Jagdev, Kumar, Devendra, Rathore, Sushila, Yang, Xiao-Jun. "An efficient computational technique for local fractional heat conduction equations in fractal media." Journal of Nonlinear Sciences and Applications, 10, no. 4 (2017): 1478--1486
Keywords
- Heat conduction equation
- fractal media
- local fractional derivative
- local fractional homotopy perturbation method
- local fractional Sumudu transform method.
MSC
References
-
[1]
A. Atangana, Extension of the Sumudu homotopy perturbation method to an attractor for one-dimensional Keller-Segel equations, Appl. Math. Model., 39 (2015), 2909–2916.
-
[2]
A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model , Therm. Sci., 20 (2016), 763–769.
-
[3]
D. Baleanu, H. M. Srivastava, X.-J. Yang, Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on Cantor sets, Prog. Fract. Differ. Appl., 1 (2015), 1–11.
-
[4]
F. B. M. Belgacem, A. A. Karaballi, S. L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Math. Probl. Eng., 3 (2003), 103–118.
-
[5]
H. Bulut, H. M. Baskonus, S. Tuluce, The solutions of partial differential equations with variable coefficient by Sumudu transform method, AIP Conf. Proc., 1493 (2012), 91–95.
-
[6]
J.-H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg., 178 (1999), 257–262.
-
[7]
J. Hristov, Heat-balance integral to fractional (half-time) heat diffusion sub-model, Therm. Sci., 14 (2010), 291–316.
-
[8]
H. Jafari, H. K. Jassim, S. P. Moshokoa, V. M. Ariyan, F. Tchier, Reduced differential transform method for partial differential equations within local fractional derivative operators, Adv. Mech. Eng., 8 (2016), 1–6.
-
[9]
M. Ma, D. Baleanu, Y. S. Gasimov, X.-J. Yang, New results for multidimensional diffusion equations in fractal dimensional space, Rom. J. Phys., 61 (2016), 784–794.
-
[10]
M. Majumder, N. Chopra, R. Andrews, B. J. Hinds, Nanoscale hydrodynamics: enhanced flow in carbon nanotubes, Nature, 438 (2005), 44–44.
-
[11]
G. M. Mittag-Leffler, Sur la nouvelle fonction \(E_\alpha(x)\), CR Acad. Sci. Paris, 137 (1903), 554–558.
-
[12]
Y. Z. Povstenko, Fractional heat conduction equation and associated thermal stress, J. Therm. Stresses, 28 (2004), 83–102.
-
[13]
D. Rayneau-Kirkhope, Y. Mao, R. Farr, Ultralight fractal structures from hollow tubes, Phys. Rev. Lett., 109 (2012), 204301–204304.
-
[14]
T.-M. Shih, A literature survey on numerical heat transfer, Num. Heat Transfer, 5 (1982), 369–420.
-
[15]
J. Singh, D. Kumar, A. Kılıçman, Numerical solutions of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations, Abstr. Appl. Anal., 2014 (2014), 12 pages.
-
[16]
J. Singh, D. Kumar, J. J. Nieto, A reliable algorithm for a local fractional Tricomi equation arising in fractal transonic flow, Entropy, 18 (2016), 8 pages.
-
[17]
H. M. Srivastava, A. K. Golmankhaneh, D. Baleanu, X .J. Yang, Local fractional Sumudu transform with application to IVPs on Cantor sets, Abstr. Appl. Anal., 2014 (2014), 7 pages.
-
[18]
W.-H. Su, D. Baleanu, X.-J. Yang, H. Jafari, Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method, Fixed Point Theory Appl., 2013 (2013), 11 pages.
-
[19]
V. E. Tarasov, Heat transfer in fractal materials, Int. J. Heat Mass Transfer, 93 (2016), 427–430.
-
[20]
Q.-L. Wang, J.-H. He, Z.-B. Li, Fractional model for heat conduction in polar bear hairs, Therm. Sci., 16 (2012), 339–342.
-
[21]
G. K. Watugala, Sumudu transform: a new integral transform to solve differential equations and control engineering problems, Internat. J. Math. Ed. Sci. Tech., 24 (1993), 35–43.
-
[22]
Y.-M. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43 (2000), 3701–3707.
-
[23]
S.-P. Yan, H. Jafari, H. K. Jassim, Local fractional Adomian decomposition and function decomposition methods for Laplace equation within local fractional operators, Adv. Math. Phys., 2014 (2014 ), 7 pages.
-
[24]
X.-J. Yang, Advanced local fractional calculus and its applications, World Science, New York, NY, USA (2012)
-
[25]
X.-J. Yang, D. Baleanu, Fractal heat conduction problem solved by local fractional variation iteration method, Therm. Sci., 17 (2013), 625–628.
-
[26]
X.-J. Yang, D. Baleanu, H. M. Srivastava, Local fractional integral transforms and their applications, Academic Press, (2015)
-
[27]
X.-J. Yang, J. A. T. Machado, C. Cattani, F. Gao, On a fractal LC-electric circuit modeled by local fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 47 (2017), 200–206.
-
[28]
X.-J. Yang, H. M. Srivastava, C. Cattani, Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics, Rom. Rep. Phys., 67 (2015), 752–761.
-
[29]
X.-J. Yang, H. M. Srivastava, J.-H. He, D. Baleanu, Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives, Phys. Lett. A, 377 (2013), 1696–1700.
-
[30]
X.-J. Yang, H. M. Srivastava, J. A. T. Machado, A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753–756.
-
[31]
A.-M. Yang, Y.-Z. Zhang, Y. Long, The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar, Therm. Sci., 17 (2013), 707–713.
-
[32]
Y. Zhang, C. Cattani, X.-J. Yang, Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains, Entropy, 17 (2015), 6753–6764.
-
[33]
D. Zhao, X.-J. Yang, H. M. Srivastava, On the fractal heat transfer problems with local fractional calculus, Therm. Sci., 19 (2015), 1867–1871.