Common fixed points for pairs of triangular \(\alpha\)-admissible mappings
-
2811
Downloads
-
6330
Views
Authors
Haitham Qawagneh
- School of mathematical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM, Selangor Darul Ehsan, Malaysia.
Mohd Salmi MD Noorani
- School of mathematical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM, Selangor Darul Ehsan, Malaysia.
Wasfi Shatanawi
- Department of Mathematics and General Courses, Prince Sultan University, Riyadh, Saudi Arabia.
- Department of Mathematics, Hashemite University, Zarqa, Jordan.
Habes Alsamir
- Department of Mathematics and General Courses, Aljouf University, Aljouf, Saudi Arabia.
Abstract
In this paper, we introduce the notation of \((\alpha-\eta)-(\psi-\varphi)\)-contraction mappings defined on a set \(X\).
We prove the existence of common fixed point results for the pair of self-mappings involving C-class functions in the
setting of metric space. Our results generalize and extend several works existing in literature. We provide an example
and some applications in order to support our results.
Share and Cite
ISRP Style
Haitham Qawagneh, Mohd Salmi MD Noorani, Wasfi Shatanawi, Habes Alsamir, Common fixed points for pairs of triangular \(\alpha\)-admissible mappings, Journal of Nonlinear Sciences and Applications, 10 (2017), no. 12, 6192--6204
AMA Style
Qawagneh Haitham, MD Noorani Mohd Salmi, Shatanawi Wasfi, Alsamir Habes, Common fixed points for pairs of triangular \(\alpha\)-admissible mappings. J. Nonlinear Sci. Appl. (2017); 10(12):6192--6204
Chicago/Turabian Style
Qawagneh, Haitham, MD Noorani, Mohd Salmi, Shatanawi, Wasfi, Alsamir, Habes. "Common fixed points for pairs of triangular \(\alpha\)-admissible mappings." Journal of Nonlinear Sciences and Applications, 10, no. 12 (2017): 6192--6204
Keywords
- C-class functions
- \(\alpha\)-admissible mapping
- common fixed point
- metric spaces
MSC
References
-
[1]
P. Chuadchawna, A. Kaewcharoen and S. Plubtieng, Fixed point theorems for generalized \(\alpha-\eta-\psi\)-Geraghty contraction type mappings in \(\alpha-\eta-\psi\)-complete metric spaces , J. Nonlinear Sci. Appl., 9 (2016), 471–485.
-
[2]
S. Alizadeh, F. Moradlou, P. Salimi , Some fixed point results for \((\alpha,\beta) - (\psi,\phi)\)-contractive mappings, Filomat, 28 (2014), 635–647.
-
[3]
H. Alsamir, M. S. Noorani, W. Shatanawi, F. Shaddad, GeGeneralized Berinde-type (\(\eta,\xi,\vartheta,\theta\)) contractive mappings in B-metric spaces with an application, J. Math. Anal., 6 (2016), 1–12.
-
[4]
A. H. Ansari , Note on \(\varphi-\psi\)-contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics and Applications, Payame Noor University, Tehran, (2014), 377–380.
-
[5]
A. H. Ansari, J. Kaewcharoen, C-class functions and fixed point theorems for generalized \(\alpha-\eta-\psi-\varphi-F-\)contraction type mappings in --complete metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 4177–4190.
-
[6]
A. H. Ansari, W. Shatanawi, A. kurdi, G. Maniu , Best proximity points in complete metric spaces with (P)-property via C-class functions, J. Math. Anal., 7 (2016), 54–67.
-
[7]
P. Das, L. K. Dey , A fixed point theorem in a generalized metric space, Soochow J. Math., 33 (2007), 33–39.
-
[8]
N. Hussain, M. A. Kutbi, P. Salimi, Fixed point theory in \(\alpha\)-complete metric spaces with applications, Abstr. Appl. Anal., 2014 (2014), 11 pages.
-
[9]
N. Hussain, P. Salimi, A. Latif , Fixed point results for single and set-valued \(\alpha-\eta-\psi-\)contractive mappings, Fixed Point Theory Appl., 2013 (2013), 23 pages.
-
[10]
E. Karapınar , \(\alpha-\psi\)-Geraghty contraction type mappings and some related fixed point results, Filomat, 28 (2014), 37–48.
-
[11]
E. Karapınar, P. Kumam, P. Salimi, On \(\alpha-\psi\)-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013), 12 pages.
-
[12]
M. S. Khan, A fixed point theorem for metric spaces, Rend. Ist. Mat. Univ. Trieste, 8 (1976), 69–72.
-
[13]
M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), 1–9.
-
[14]
D. K. Patel, T. Abdeljawad, D. Gopal , Common fixed points of generalized Meir-Keeler \(\alpha\)-contractions , Fixed Point Theory Appl., 2013 (2013), 16 pages.
-
[15]
J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei,W. Shatanawi, Common fixed points of almost generalized \((\psi,\varphi)_s\)- contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl., 2013 (2013), 23 pages.
-
[16]
P. Salimi, A. Latif, N. Hussain, Modified \(\alpha-\psi\)-contractive mappings with applications, Fixed Point Theory Appl., 2013 (2013), 19 pages.
-
[17]
B. Samet, C. Vetro, P. Vetro, Fixed point theorems for \(\alpha-\psi\)-contractive type mappings , Nonlinear Anal., 75 (2012), 2154–2165.
-
[18]
W. Shatanawi, M. S. Noorani, H. Alsamir, A. Bataihah, Fixed and common fixed point theorems in partially ordered quasi-metric spaces, J. Math. Computer. Sci., 16 (2016), 516–528.
-
[19]
W. Shatanawi, M. Postolache , Common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces, Fixed Point Theory Appl., 2013 (2013), 13 pages.