An LQP-SQP alternating direction method for solving variational inequality problems with separable structure
-
2387
Downloads
-
4681
Views
Authors
Adnan Alhomaidan
- Department of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
Abdellah Bnouhachem
- Laboratoire d'Ingénierie des Systèmes et Technologies de l'Information, Ibn Zohr University, Agadir, BP 1136, Morocco.
Abdul Latif
- Department of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
Abstract
In this paper, by combining the
logarithmic-quadratic proximal (LQP) method and the square
quadratic proximal (SQP) method, we propose an inexact
alternating direction method for solving constrained variational
inequalities \(VI(S,f),\) where \(S\) is a convex set with linear
constraints.
Under certain conditions, the global
convergence of the proposed method is established. We show the
O(1/t) convergence rate for the inexact LQP-SQP alternating
direction method. To demonstrate the efficiency of the proposed
method, we provide numerical results for traffic equilibrium
problems.
Share and Cite
ISRP Style
Adnan Alhomaidan, Abdellah Bnouhachem, Abdul Latif, An LQP-SQP alternating direction method for solving variational inequality problems with separable structure, Journal of Nonlinear Sciences and Applications, 10 (2017), no. 12, 6246--6261
AMA Style
Alhomaidan Adnan, Bnouhachem Abdellah, Latif Abdul, An LQP-SQP alternating direction method for solving variational inequality problems with separable structure. J. Nonlinear Sci. Appl. (2017); 10(12):6246--6261
Chicago/Turabian Style
Alhomaidan, Adnan, Bnouhachem, Abdellah, Latif, Abdul. "An LQP-SQP alternating direction method for solving variational inequality problems with separable structure." Journal of Nonlinear Sciences and Applications, 10, no. 12 (2017): 6246--6261
Keywords
- Proximal point algorithm
- logarithmic-quadratic proximal method
- square quadratic proximal
- variational inequality
- prediction-correction
- traffic equilibrium problems
MSC
References
-
[1]
A. E. Al-Mazrooei, A. Latif, J. C. Yao, Solving generalized mixed equilibria, variational inequalities, and constrained convex minimization, Abstr. Appl. Anal., 2014 (2014), 26 pages.
-
[2]
A. Auslender, M. Teboulle, S. Ben-Tiba, A logarithmic-quadratic proximal method for variational inequalities, Computational optimization–a tribute to Olvi Mangasarian, Part I, Comput. Optim. Appl., 12 (1999), 31–40.
-
[3]
A. Bnouhachem, On LQP alternating direction method for solving variational inequality problems with separable structure, J. Inequal. Appl., 2014 (2014), 15 pages.
-
[4]
A. Bnouhachem, Q. H. Ansari , A descent LQP alternating direction method for solving variational inequality problems with separable structure, Appl. Math. Comput., 246 (2014), 519–532.
-
[5]
A. Bnouhachem, H. Benazza, M. Khalfaoui, An inexact alternating direction method for solving a class of structured variational inequalities , Appl. Math. Comput., 219 (2013), 7837–7846.
-
[6]
A. Bnouhachem, A. Hamdi , Parallel LQP alternating direction method for solving variational inequality problems with separable structure, J. Inequal. Appl., 2014 (2014), 14 pages.
-
[7]
A. Bnouhachem, A. Latif, Q. H. Ansari , On the \(O(1/t)\) convergence rate of the alternating direction method with LQP regularization for solving structured variational inequality problems, J. Inequal. Appl., 2016 (2016), 14 pages.
-
[8]
A. Bnouhachem, M. H. Xu, An inexact LQP alternating direction method for solving a class of structured variational inequalities, Comput. Math. Appl., 67 (2014), 671–680.
-
[9]
L.-C. Ceng, A. Latif, J.-C. Yao , On solutions of a system of variational inequalities and fixed point problems in Banach spaces, Fixed Point Theory Appl., 2013 (2013), 34 pages.
-
[10]
F. Facchinei, J.-S. Pang , Finite-dimensional variational inequalities and complementarity problems, Vol. I and II, Springer Series in Operations Research, Springer-Verlag, New York (2003)
-
[11]
X.-L. Fu, A. Bnouhachem , An self-adaptive LQP method for constrained variational inequalities, Appl. Math. Comput., 189 (2007), 1586–1600.
-
[12]
R. Glowinski , Numerical methods for nonlinear variational problems, Springer Series in Computational Physics, Springer-Verlag, New York (1984)
-
[13]
R. Glowinski, P. Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1989)
-
[14]
H.-J. He, K. Wang, X.-J. Cai, D.-R. Han , An LQP-based two-step method for structured variational inequalities, J. Oper. Res. Soc. China, 5 (2017), 301–317.
-
[15]
B.-S. He, Y. Xu, X.-M. Yuan, A logarithmic-quadratic proximal prediction-correction method for structured monotone variational inequalities, Comput. Optim. Appl., 35 (2006), 19–46.
-
[16]
B.-S. He, H. Yang, S.-L.Wang, Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities, J. Optim. Theory Appl., 106 (2000), 337–356.
-
[17]
B.-S. He, J. Zhou, A modified alternating direction method for convex minimization problems , App. Math. Lett., 13 (2000), 123–130.
-
[18]
Z.-K. Jiang, A. Bnouhachem, A projection-based prediction-correction method for structured monotone variational inequalities, Appl. Math. Comput., 202 (2008), 747–759.
-
[19]
S. Kontogiorgis, R. R. Meyer, A variable-penalty alternating directions method for convex optimization , Math. Programming, 83 (1998), 29–53.
-
[20]
A. Latif, L.-C. Ceng, Q. H. Ansari , Multi-step hybrid viscosity method for systems of variational inequalities defined over sets of solutions of an equilibrium problem and fixed point problems , Fixed Point Theory Appl., 2012 (2012), 26 pages.
-
[21]
A. Latif, D. T. Luc, Variational relation problems: existence of solutions and fixed points of contraction mappings, Fixed Point Theory Appl., 2013 (2013), 10 pages
-
[22]
M. Li , A hybrid LQP-based method for structured variational inequalities, Int. J. Comput. Math., 89 (2012), 1412–1425.
-
[23]
M. Tao, X.-M. Yuan , On the \(O(1/t)\) convergence rate of alternating direction method with logarithmic-quadratic proximal regularization, SIAM J. Optim., 22 (2012), 1431–1448.
-
[24]
M. Teboulle, Convergence of proximal-like algorithms , SIAM J. Optim., 7 (1997), 1069–1083.
-
[25]
X.-M. Yuan, M. Li, An LQP-based decomposition method for solving a class of variational inequalities, SIAM J. Optim., 21 (2011), 1309–1318.