Lomax inverse Weibull model: properties, applications, and a modified Chi-squared goodness-of-fit test for validation
Volume 13, Issue 6, pp 330--353
http://dx.doi.org/10.22436/jnsa.013.06.04
Publication Date: April 07, 2020
Submission Date: August 29, 2019
Revision Date: October 29, 2019
Accteptance Date: January 16, 2020
-
1683
Downloads
-
3295
Views
Authors
Hafida Goual
- Laboratory of Probability and Statistics, University of Badji Mokhtar, Annaba, Algeria.
Haitham M. Yousof
- Department of Statistics, Mathematics and Insurance, Benha University, Egypt.
M. Masoom Ali
- Department of Mathematical Sciences, Ball State University, Muncie, Indiana, 47306, USA.
Abstract
In this paper, we introduce a new extension of the Inverse Weibull
distribution along with a number of its mathematical properties. Next, we
construct a modified Chi-squared goodness-of-fit test based on the
Nikulin-Rao-Robson statistic for censored and complete data. We describe the theory and the mechanism of the \(Y_{n}^{2}\) test statistic which can be used in survival and reliability data analysis. We use the maximum likelihood estimators based on the initial non grouped data sets. Then, we conduct numerical simulations to reinforce the results. For showing the applicability of our model in various fields, we illustrate the proposed test by applications to two real data sets for complete data case and two other data sets in the presence of right censored.
Share and Cite
ISRP Style
Hafida Goual, Haitham M. Yousof, M. Masoom Ali, Lomax inverse Weibull model: properties, applications, and a modified Chi-squared goodness-of-fit test for validation, Journal of Nonlinear Sciences and Applications, 13 (2020), no. 6, 330--353
AMA Style
Goual Hafida, Yousof Haitham M., Masoom Ali M., Lomax inverse Weibull model: properties, applications, and a modified Chi-squared goodness-of-fit test for validation. J. Nonlinear Sci. Appl. (2020); 13(6):330--353
Chicago/Turabian Style
Goual, Hafida, Yousof, Haitham M., Masoom Ali, M.. "Lomax inverse Weibull model: properties, applications, and a modified Chi-squared goodness-of-fit test for validation." Journal of Nonlinear Sciences and Applications, 13, no. 6 (2020): 330--353
Keywords
- Goodness-of-Fit
- NRR test
- censored data
- surviaval analysis
- simulation
- modeling
- inverse Weibull
- maximum likelihood
MSC
References
-
[1]
A. Z. Afify, H. M. Yousof, G. M. Cordeiro, E. M. M. Ortega, Z. M. Nofal, The Weibull Fr´echet distribution and its applications, J. Appl. Stat., 43 (2016), 2608--2626
-
[2]
V. B. Bagdonavicius, J. Kruopis, M. Nikulin, Nonparametric tests for Censored Data, ISTE and J. Wiley, London (2010)
-
[3]
V. B. Bagdonavicius, R. J. Levuliene, M. S. Nikulin, Chi-squared goodness-of-fit tests for parametric accelerated failure time models, Comm. Statist. Theory Methods, 42 (2013), 2768--2785
-
[4]
V. B. Bagdonavicius, M. S. Nikulin, Chi-squared Goodness-of-fit Test for Right Censored Data, Int. J. Appl. Math. Stat., 24 (2011), 30--50
-
[5]
V. Bagdonavicius, M. Nikulin, Chi-squared tests for general composite hypotheses from censored samples, C. R. Math. Acad. Sci. Paris, 349 (2011), 219--223
-
[6]
N. Balakrishnan, V. Voinov, M. S. Nikulin, Chi-Squared Goodness of Fit Tests with Applications, Academic Press, New York (2013)
-
[7]
M. Bourguignon, R. B. Silva, G. M. Cordeiro, The Weibull--G family of probability distributions, J. Data Sci., 12 (2014), 53--68
-
[8]
S. Chouia, N. Seddik-Ameur, A modified chi-square test for Bertholon model with censored data, Comm. Statist. Simulation Comput., 46 (2017), 593--602
-
[9]
G. M. Cordeiro, H. M. Yousof, T. G. Ramires, E. M. M. Ortega, The Burr XII system of densities: properties, regression model and applications, J. Stat. Comput. Simul., 88 (2018), 432--456
-
[10]
V. Couallier, L. Gerville-Réache, C. Huber-Carol, N. Limnios, M. Mesbah, Statistical Models and Methods for Reliability and Survival Analysis}, In: Chi-Squared Goodness-of-Fit Test for Normality, 2013 (2013), 213--227
-
[11]
R. V. da Silva, T. A. de Andrade, D. Maciel, R. P. Campos, G. M. Cordeiro, A new lifetime model: The gamma extended Fréchet distribution, J. Stat. Theory Appl., 12 (2013), 39--54
-
[12]
B. Efron, Logistic regression, survival analysis, and the Kaplan--Meier curve, J. Amer. Statist. Assoc., 83 (1988), 414--425
-
[13]
I. Elbatal, G. Asha, A. V. Raja, Transmuted exponentiated Fréchet distribution: properties and applications, J. Stat. Appl. Prob., 3 (2014), 379--394
-
[14]
E. J. Freireich, E. Gehan, E. Frei, L. R. Schroeder, I. J. Wolman, R. Anbari, E. O. Burgert, S. D. Mills, D. Pinkel, O. S. Selawry, The effect of 6-mercaptopurine on the duration of steroid-induced remissions in acute leukemia: A model for evaluation of other potentially useful therapy, Blood, 21 (1963), 699--716
-
[15]
H. Goual, N. Seddik-Ameur, Chi-squared type test for the AFT-generalized inverse Weibull distribution, Comm. Statist. Theory Methods, 43 (2014), 2605--2617
-
[16]
H. Goual, N. Seddik-Ameur, A modified Chi-squared goodness-of-fit test for the kumaraswamy generalized inverse Weibull distribution and its applications, J. Stat. Adv. Theory Appl., 6 (2016), 275--305
-
[17]
P. E. Greenwood, M. S. Nikulin, A guide to chi-squared testing, John Wiley & Sons, New York (1996)
-
[18]
M. G. Habib, D. R. Thomas, Chi-Square Goodness-if-Fit Tests for Randomly Censored Data, Ann. Statist., 14 (1986), 759--765
-
[19]
D. G. Harlow, Applications of the Fréchet distribution function, Int. J. Mat. Product Tech., 17 (2002), 482--495
-
[20]
S. Kotz, S. Nadarajah, Extreme Value Distributions: Theory and Applications, Imperial College Press, London (2000)
-
[21]
E. Krishna, K. K. Jose, T. Alice, M. M. Ristic, The Marshall--Olkin Fréchet Distribution, Comm. Statist. Theory Methods, 42 (2013), 4091--4107
-
[22]
M. R. Mahmoud, R. M. Mandouh, On the Transmuted Fréchet Distribution, J. Appl. Sci. Res., 9 (2013), 5553--5561
-
[23]
M. E. A. Mead, A note on Kumaraswamy-Fréchet Distribution, Aust. J. Basic and Appl. Sci., 8 (2014), 294--300
-
[24]
M. Mubarak, Parameter estimation based on the Fréchet Progressive Type II censored data with binomial removals, J. Qual. Statist. Reliab., 2012 (2012), 5 pages
-
[25]
S. Nadarajah, A. K. Gupta, The Beta Fréchet Distribution, Far East J. Theor. Stat., 14 (2004), 15--24
-
[26]
S. Nadarajah, S. Kotz, The exponentiated Fréchet distribution, Interstat Electron. J., 2003 (2003), 1--7
-
[27]
M. D. Nichols, W. J. Padgett, A bootstrap control chart for Weibull percentiles, Quality Reliab. Eng. Int., 22 (2006), 141--151
-
[28]
M. S. Nikulin, Chi-squared test for continuous distributions with shift and scal parameters, Theory Probab. Appl., 18 (1973), 559--568
-
[29]
M. Nikulin, F. Haghighi, A chi-squared test for the generalized power weibull family for the head-and-neck cancer censored data, J. Math. Sci., 133 (2006), 1333--1341
-
[30]
K. C. Rao, D. S. Robson, A Chi-square statistic for goodness-of-fit tests within the exponential family, Comm. Statist., 3 (1974), 1139--1153
-
[31]
R. L. Smith, J. C. Naylor, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, J. Roy. Statist. Soc. Ser. C, 36 (1987), 358--369
-
[32]
R. Varadhan, P. Gilbert, BB: An $R$ package for solving a large system of nonlinear equations and for optimizing a high-dimensional nonlinear objective function, J. Statist. Software, 32 (2009), 1--26