@Article{Qiao2018,
author="Lei Qiao",
title="Cylindrical Carleman's formula of subharmonic functions and its application",
year="2018",
volume="11",
number="8",
pages="947--952",
abstract="Our aim in this paper is to prove the cylindrical Carleman's formula for subharmonic functions in a truncated cylinder. As an
application, we prove that if the positive part of a harmonic function in a cylinder satisfies a slowly growing condition, then
its negative part can also be dominated by a similar slowly growing condition, which
improves some classical results about harmonic functions in a cylinder.",
issn="ISSN 2008-1901",
doi="10.22436/jnsa.011.08.01",
url="http://dx.doi.org/10.22436/jnsa.011.08.01"
}
@Article{Armitage1981,
author="D. H. Armitage",
title="A Nevanlinna theorem for superharmonic functions in half-spaces, with applications",
journal=" J. London Math. Soc.",
year="1981",
pages=" 137–157. ",
volume="23"
}
@Book{Gilbarg1977,
author=" D. Gilbarg, N. S. Trudinger",
title="Elliptic partial differential equations of second order",
year="1977",
publisher=" Grundlehren der Mathematischen Wissenschaften, Springer-Verlag",
address=" Berlin-New York"
}
@Article{Kuran1970,
author="Ü. Kuran",
title="Harmonic majorizations in half-balls and half-spaces",
journal=" Proc. London Math. Soc.",
year="1970",
pages=" 614–636. ",
volume="21"
}
@Book{Levin 1992,
author=" B. Y. Levin ",
title="Entire and subharmonic functions",
year="1992",
publisher="Adv. Soviet Math., Amer. Math. Soc.",
address="Providence, RI"
}
@Article{Miyamoto1996,
author="I. Miyamoto",
title=" Harmonic functions in a cylinder which vanish on the boundary",
journal="Japan. J. Math.",
year="1996",
pages=" 241–255. ",
volume="22"
}
@Article{Miyamoto2000,
author=" I. Miyamoto, H. Yoshida ",
title="Harmonic functions in a cylinder with normal derivatives vanishing on the boundary",
journal=" Ann. Polon. Math.",
year="2000",
pages=" 229–235.",
volume="74"
}
@Article{Miyamoto2007/08,
author="I. Miyamoto, H. Yoshida",
title=" On a covering property of minimally thin sets at infinity in a cylinder",
journal=" Math. Montisnigri",
year="2007/08",
pages=" 35–54.",
volume="20/21"
}
@Article{Qiao2018,
author="L. Qiao",
title="Asymptotic behavior of Poisson integrals in a cylinder and its application to the representation of harmonic functions",
journal=" Bull. Sci. Math.",
year="2018",
pages=" 39–54.",
volume="144"
}
@Article{Rashkovskiı1995,
author="A. Y. Rashkovskiı, L. I. Ronkin",
title="Subharmonic functions of finite order in a cone. III.",
journal=" Functions of completely regular growth, J. Math. Sci.",
year="1995",
pages="2929–2940. ",
volume="77"
}
@Book{Ronkin1992,
author=" L. I. Ronkin",
title=" Functions of completely regular growth ",
year="1992",
publisher="Kluwer Academic Publishers Group ",
address="Dordrecht"
}
@Book{Rozenblyum1989,
author="G. V. Rozenblyum, M. Z. Solomyak, M. A. Shubin",
title=" Spectral theory of differential operators",
year="1989",
publisher=" Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform.",
address="Moscow"
}
@Article{Yoshida1991,
author=" H. Yoshida",
title="Harmonic majorization of a subharmonic function on a cone or on a cylinder ",
journal="Pacific J. Math.",
year="1991",
pages=" 369–395.",
volume="148"
}