]>
2020
13
1
ISSN 2008-1898
0
Solvability of the functional integro-differential equation with self-reference and state-dependence
Solvability of the functional integro-differential equation with self-reference and state-dependence
en
en
The existence of solutions of a functional integro-differential equation with self-reference and state-dependence will be studied. The continuous dependence of the solution on the delay \(\phi(t)\), the functional \(g\) and initial data \(x_0\) will be proved.
1
8
A. M. A.
El-Sayed
Faculty of Science
Alexandria University
Egypt
amasayed@alexu.edu.eg
Reda Gamal
Aahmed
Faculty of Science
Al-Azhar University
Egypt
redagamal@azhar.edu.eg
Functional equations
existence of solutions
continuous dependence
state-dependence
self-reference
Article.1.pdf
[
[1]
C. Bacoţiu, Volterra--fredholm nonlinear systems with modified argument via weakly picard operators theory, Carpathian J. Math., 24 (2008), 1-9
##[2]
M. Benchohra, M. A. Darwish, On unique solvability of quadratic integral equations with linear modification of the argument, Miskolc Math. Notes, 10 (2009), 3-10
##[3]
V. Berinde, Existence and approximation of solutions of some first order iterative differential equations, Miskolc Math. Notes, 11 (2010), 13-26
##[4]
A. Buica, Existence and continuous dependence of solutions of some functional-differential equations, Seminar on Fixed Point Theory (Babes-Bolyai Univ., Cluj-Napoca), 3 (1995), 1-14
##[5]
E. Eder, The functional differential equation $x'(t)=x(x(t))$, J. Differential Equations, 54 (1984), 390-400
##[6]
M. Fečkan, On a certain type of functional differential equations, Math. Slovaca, 43 (1993), 39-43
##[7]
K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambirdge Universty Press, Cambirdge (1990)
##[8]
A. N. Kolomogorov, S. V. Fomin, Inroductory real analysis, Dover Publications, New York (1975)
##[9]
S. Staněk, Global properties of decreasing solutions of the equation $x'(t)=x(x(t))+x(t)$, Funct. Differ. Equ., 4 (1997), 191-213
##[10]
S. Staněk, Globel properties of solutions of the functional differenatial equation $x(t)x'(t)=kx(x(t)),~ 0 <|k|< 1$, Funct. Differ. Equ., 9 (2004), 527-550
##[11]
K. Wang, On the equation $x'(t)=f(x(x(t)))$, Funkcial. Ekvac., 33 (1990), 405-425
##[12]
P. P. Zhang, X. B. Gong, Existence of solutions for iterative differential equations, Electron. J. Differential Equations, 2014 (2014), 1-10
]