]>
2020
13
2
ISSN 2008-1898
0
Preservation properties for some classes of discrete distributions
Preservation properties for some classes of discrete distributions
en
en
In this paper, some new families of discrete life distributions are discussed. Definitions and Basic Results are introduced. Several properties of these classes are presented, including the preservation under convolution, closer under the formation of parallel systems and mixing.
75
84
Enayat M.
Abd Elrazik
Management Information System Department, Yanbu
Taibah University
Saudi Arabia
ekhalilabdelgawad@taibahu.edu.sa
Classes of life distributions
NBUCA
GHNWUE
convolution
mixing
formation of parallel systems
Article.1.pdf
[
[1]
T. H. M. Abouelmagd, A. A. E. Ahmed, E. M. Abd Elrazik, M. M. Mansour, A.-H. N. Ahmed, A. Z. Afify, A new aging concept derived from the increasing convex ordering, Comm. Statist. Theory Methods, 48 (2019), 2904-2916
##[2]
I. A. Ahmad, Moments inequalities of aging families of distributions with hypotheses testing applications, J. Statist. Plann. Inference, 92 (2001), 121-132
##[3]
I. A. Ahmad, A. Ahmed, I. Elbatal, M. Kayid, An aging notion derived from the increasing convex ordering: the NBUCA class, J. Statist. Plann. Inference, 136 (2006), 555-569
##[4]
A.-H. N. Ahmed, The generalized HNBUE (HNWUE) class of life distributions, Z. Oper. Res., 34 (1990), 183-194
##[5]
R. E. Barlow, F. Proschan, Statistical theory of Reliability and life testing, Holt, Rinehart and Winston, New York-Montreal (1975)
##[6]
F. Belzunce, A. K. Nanda, E.-M. Ortega, J. M. Ruiz, Generalized orderings of excess lifetimes of renewal processes, TEST, 17 (2008), 297-310
##[7]
J. Cai, V. Kalashnikov, NWU property of a class of random sums, J. Appl. Probab., 37 (2000), 283-289
##[8]
J. Cai, G. E. Willmot, Monotonicity and aging properties of random sums, Statist. Probab. Lett., 73 (2005), 381-392
##[9]
J. H. Cao, Y. D. Wang, The NBUC and NWUC classes of life distributions, J. Appl. Probab., 28 (1991), 473-479
##[10]
E. Fagiuoli, F. Pellerey, New partial orderings and applications, Naval Res. Logist., 40 (1993), 829-842
##[11]
P. L. Gupta, R. C. Gupta, R. C. Tripathi, On the monotonic properties of discrete failure rates, J. Statist. Plann. Inference, 65 (1997), 255-268
##[12]
M. I. Hendi, A. F. Mashhour, M. A. Montasser, Closure of the NBUC class under formation of parallel systems, J. Appl. Probab., 30 (1993), 975-978
##[13]
T. Z. Hu, H. L. Xie, Proofs of the closure property of NBUC and NBU (2) under convolution, J. Appl. Probab., 39 (2002), 224-227
##[14]
N. L. Johnson, A. W. Kemp, S. Kotz, Univariate discrete distributions, John Wiley & Sons, Hoboken (2005)
##[15]
X. H. Li, S. C. Kochar, Some new results involving the NBU (2) class of life distributions, J. Appl. Probab., 38 (2001), 242-247
##[16]
G. E. Willmot, J. Cai, Aging and other distributional properties of discrete compound geometric distributions, Insurance Math. Econom., 28 (2001), 361-379
##[17]
G. E. Willmot, S. Drekic, J. Cai, Equilibrium compound distributions and stop-loss moments, Scand. Actuar. J., 2005 (2005), 6-24
##[18]
G. E. Willmot, X. S. Lin, Lundberg approximations for compound distributions with insurance applications, Springer-Verlag, New York (2001)
]
Nonuniform exponential dichotomy for block triangular systems on the half line
Nonuniform exponential dichotomy for block triangular systems on the half line
en
en
In this paper, we discuss the nonuniform exponential dichotomy properties of nonautonomous systems of linear differential equations. Since any linear differential systems are kinematically similar to a triangular system, considering the relation between the nonuniform exponential dichotomy properties of the triangular system is necessary. Without loss of generality, we consider block upper triangular systems and give the criteria for the nonuniform exponential dichotomy of triangular systems on the half line for unbounded systems.
85
96
Le Huy
Tien
Department of Mathematics, Mechanics and Informatics
Vietnam National University at Hanoi
Viet Nam
tienlh@viasm.edu.vn
Le Duc
Nhien
Department of Mathematics, Mechanics and Informatics
Vietnam National University at Hanoi
Viet Nam
nhien0610@gmail.com
Ta Van
Chien
Department of Mathematics, Mechanics and Informatics
Vietnam National University at Hanoi
Viet Nam
tavanchien_s16@hus.edu.vn
Nonuniform exponential dichotomy
triangular system
exponential dichotomy
Article.2.pdf
[
[1]
L. Barreira, D. Dragičević, C. Valls, Fredholm Operators and Nonuniform Exponential Dichotomies, Chaos Solitons Fractals, 85 (2016), 120-127
##[2]
L. Barreira, D. Dragičević, C. Valls, Nonuniform exponential dichotomies and Fredholm operators for flows, Aequationes Math., 91 (2017), 301-316
##[3]
L. Barreira, D. Dragičević, C. Valls, Nonuniform exponential dichotomies and Lyapunov functions, Regul. Chaotic Dyn., 22 (2017), 197-209
##[4]
L. Barreira, Y. Pesin, Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press, Cambridge (2007)
##[5]
L. Barreira, C. Valls, Stable manifolds for nonautonomous equations without exponential dichotomy, J. Differential Equations, 221 (2006), 58-90
##[6]
L. Barreira, C. Valls, Stability of Nonautonomous Differential Equations, Springer, Berlin (2008)
##[7]
L. Barreira, C. Valls, Nonuniform exponential dichotomies and admissibility, Discrete Contin. Dyn. Syst., 30 (2011), 39-53
##[8]
L. Barreira, C. Valls, On two notions of exponential dichotomy, Dyn. Syst., 33 (2018), 708-721
##[9]
F. Battelli, K. J. Palmer, Criteria for exponential dichotomy for triangular systems, J. Math. Anal. Appl., 428 (2015), 525-543
##[10]
W. A. Coppel, Dichotomies in Stability Theory, Springer-Verlag, Berlin (1978)
##[11]
O. Perron, Die Stabilitatsfrage bei Differentialgleichungen, (German) Math. Z., 32 (1930), 703-728
##[12]
L. F. Zhou, K. N. Lu, W. N. Zhang, Equivalences between nonuniform exponential dichotomy and admissibility, J. Differential Equations, 262 (2017), 682-747
]
Modeling turbulence with the Navier-Stokes equations
Modeling turbulence with the Navier-Stokes equations
en
en
The Navier-Stokes differential equations describe the motion of fluids which are incompressible. The three-dimensional Navier-Stokes equations misbehave very badly although they are relatively simple-looking. The solutions could wind up being extremely unstable even with nice, smooth, reasonably harmless initial conditions. A mathematical understanding of the outrageous behavior of these equations would dramatically alter the field of fluid mechanics. This paper describes why the three-dimensional Navier-Stokes equations are not solvable, i.e., the equations cannot be used to model turbulence, which is a three-dimensional phenomenon.
97
99
Bertrand
Wong
Department of Science and Technology
Eurotech
Singapore Branch
bwong8@singnet.com.sg
Navier-Stokes equations
turbulence
forecast
geometries
solutions
experimentalist
Article.3.pdf
[
[1]
R. L. Devaney, An introduction to chaotic dynamical systems, The Benjamin/Cummings Publishing Co., Menlo Park (1986)
##[2]
J. Gleick, Chaos: making a new science, Viking Press, New York (1987)
##[3]
J. M. T. Thompson, H. B. Stewart, Nonlinear dynamics and chaos, John Wiley & Sons, Chichester (1986)
##[4]
B. Wong, The mathematical theory of turbulence or chaos, Int. J. Nonlinear Sci., 10 (2010), 264-278
]
On Ostrowski type inequalities via fractional integrals of a function with respect to another function
On Ostrowski type inequalities via fractional integrals of a function with respect to another function
en
en
In this paper, we establish new Ostrowski type inequalities involving
fractional integrals with respect to another function. Such fractional
integrals generalize the Riemann-Liouville fractional integrals
and the Ostrowski type fractional integrals.
100
106
Marian
Matoka
Pozna University of Economics and Business al.
Poland
marian.matloka@ue.poznan.pl
Ostrowski type inequality
h-convex function
fractional integral
Article.4.pdf
[
[1]
A. O. Akdemir, M. Tunç, Ostrowski type inequalities for $s$-logarithmically convex functions in the second sense with applications, Georgian Math. J., 22 (2015), 1-7
##[2]
M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are $s$-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071-1076
##[3]
M. Matloka, Ostrowski type inequalities for functions whose derivatives are $h$-convex via fractional integrals, J. Scient. Res. Rep., 3 (2014), 1633-1641
##[4]
A. Ostrowski, Uber die absolutabweichung einer differentierbaren Funktion von ihren Integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227
##[5]
M. E. Özdemir, C. Yildiz, An Ostrowski type ineequality for derivatives of $q$-th power of $s$-convex functions via fractional integrals, Georgian Math. J., 21 (2014), 491-498
##[6]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993)
##[7]
M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenian (N. S.), 79 (2010), 129-134
##[8]
M. Z. Sarikaya, A. Saglam, H. Yildirim, On some Hadamard-type inequalities for $h$-convex functions, J. Math. Inequal., 2 (2008), 335-341
##[9]
E. Set, New inequalities of Ostrowski type for mappings whose derivatives are $s$-convex in the second sense via fracional integrals, Comput. Math. Appl., 63 (2012), 1147-1154
##[10]
S. Varošanec, On $h$-convexity, J. Math. Anal. Appl., 326 (2007), 303-311
]
Some fixed point theorems in multiplicative metric spaces via compatible of type (E) and weakly sub-sequentially continuous mappings
Some fixed point theorems in multiplicative metric spaces via compatible of type (E) and weakly sub-sequentially continuous mappings
en
en
In this paper, we established some common fixed point theorems for two pairs of self mappings by using the notion of compatibility of type (E) and weak sub-sequential continuity in multiplicative metric spaces. We deduce important results in this line by restricting the number of mappings involved. The proven results are the improved one in the sense that the closedness, completeness of the whole space and continuity of the mappings are relaxed.
107
112
Rajinder
Sharma
Mathematics Section
Sohar College of Applied Sciences
Oman
rajind.math@gmail.com
Deepti
Thakur
Mathematics Section
Sohar College of Applied Sciences
Oman
thakurdeepti@yahoo.com
Coincidence point
fixed point
multiplicative metric space
compatible maps of type (E)
weak sub-sequential continuous mappings
Article.5.pdf
[
[1]
A. N. A. Afrah, Common fixed point results for compatible-type mappings in multiplicative metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 2244-2257
##[2]
A. E. Bashirov, E. M. Kurpinar, A. Özyapıcı, Multiplicative calculus and its applications, Math. Anal. Appl., 337 (2008), 36-48
##[3]
A. E. Bashirov, E. Misirli, Y. Tandogdu, A. Özyapıcı, On modeling with multiplicative differential equations, Appl. Math. J. Chinese Univ. Ser. B, 26 (2011), 425-438
##[4]
S. Beloul, Some fixed point theorems for weakly sub-sequentially continuous and compatible of type (E) mappings with application, Int. J. Nonlinear Anal. Appl., 7 (2016), 53-62
##[5]
H. Bouhadjera, More general common fixed point theorems under a new concept, Demonstr. Math., 49 (2016), 64-78
##[6]
H. Bouhadjera, C. Godet-Thobie, Common fixed point theorems for pairs of sub-compatible maps, arXiv, 2009 (2009), 1-16
##[7]
X. J. He, M. M. Song, D. P. Chen, Common fixed points for weak commutative mappings on a multiplicative metric space, Fixed Point Theory Appl., 2014 (2014), 1-9
##[8]
G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9 (1986), 771-779
##[9]
G. Jungck, B. E. Rhoades, Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math., 29 (1998), 227-238
##[10]
P. Kumar, S. Kumar, S. M. Kang, Common Fixed Point Theorems for Subcompatible and Occasionally Weakly Compatible Mappings in Multiplicative Metric Spaces, Int. J. Math. Anal., 9 (2015), 1785-1794
##[11]
M. Sarwar, Badshah-e-Rome, Some unique fixed point theorems in multiplicative metric space, arXiv, 2014 (2014), 1-19
##[12]
M. R. Singh, S. Y. Mahendra, Compatible mappings of type (E) and common fixed point theorems of Meir-Keller type, Int. J. Math. Sci. Engg. Appl., 1 (2007), 299-315
##[13]
M. Özavsar, A. C. Cevikel, Fixed point of multiplicative contraction mappings on multiplicative metric space, arXiv, 2012 (2012), 1-14
]