]>
2020
13
3
ISSN 2008-1898
0
A new iterative algorithm for solving some nonlinear problems in Hilbert spaces
A new iterative algorithm for solving some nonlinear problems in Hilbert spaces
en
en
In this paper, a new iterative algorithm for finding a common element of the set of minimizers of a convex function, the set of solutions of variational inequality problem, the set of solutions of equilibrium problems and the set of fixed points of demicontractive mappings is constructed. Convergence theorems are also proved in Hilbert spaces without any compactness assumption. Furthermore, a numerical example is given to demonstrate the implementability of our algorithm. Our theorems are significant improvements in several important recent results.
119
132
T. M. M.
Sow
Department of Mathematics
Gaston Berger University
Senegal
sowthierno89@gmail.com
Fixed points problem
convex minimization problem
equilibrium problem
variational inequality problem
Article.1.pdf
[
[1]
L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Birkhäuser Verlag, Basel (2008)
##[2]
P. N. Anh, L. T. H. An, The subgradient extragradient method extended to equilibrium problems, Optimization, 64 (2015), 225-248
##[3]
E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123-145
##[4]
C. Chidume, Geometric Properties of Banach spaces and Nonlinear Iterations, Springer-Verlag London, London (2009)
##[5]
C. E. Chidume, N. Djitté, Strong convergence theorems for zeros of bounded maximal monotone nonlinear operators, Abstr. Appl. Anal., 2012 (2012), 1-19
##[6]
P. L. Combettes, J. C. Pesquet, Proximal splitting methods in signal processing, in: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, 2011 (2011), 185-212
##[7]
K. Fan, A minimax inequality and applications, in: Inequalities III, 1972 (1972), 103-113
##[8]
O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 29 (1991), 403-419
##[9]
H. Iiduka, W. Takahashi, M. Toyoda, Approximation of solutions of variational inequalities for monotone mappings, PanAmer. Math. J., 14 (2004), 49-61
##[10]
S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim., 13 (2002), 938-945
##[11]
J. L. Lions, G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519
##[12]
P.-E. Maingé, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47 (2008), 1499-1515
##[13]
P.-E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912
##[14]
W. A. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510
##[15]
G. Marino, B. Scardamaglia, R. Zaccone, A general viscosity explicit midpoint rule for quasi--nonexpansive mappings, J. Nonlinear Convex Anal., 18 (2017), 137-148
##[16]
G. Marino, H.-K. Xu, A general iterative method for nonexpansive mappings in Hibert spaces, J. Math. Anal. Appl., 318 (2006), 43-52
##[17]
G. Marino, H.-K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Math. Appl., 329 (2007), 336-346
##[18]
B. Martinet, Regularisation, d'inéquations variationelles par approximations succesives, Rev. Franaise Informat. Recherche Opérationnelle, 4 (1970), 154-158
##[19]
I. Miyadera, Nonlinear semigroups, American Mathematical Society, Providence (1992)
##[20]
A. Moudafi, Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl., 241 (2000), 46-55
##[21]
N. Petrot, K. Wattanawitoon, P. Kumam, A hybrid projection method for generalized mixed equilibrium problems and fixed point problems in Banach spaces, Nonlinear Anal. Hybrid Syst., 4 (2010), 631-643
##[22]
X. L. Qin, Y. J. Cho, S. M. Kang, H. Zhou, Convergence of a modified Halpern-type iteration algorithm for quasi-$\phi$-nonexpansive mappings, Appl. Math. Lett., 22 (2009), 1051-1055
##[23]
R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 1970 (149), 75-88
##[24]
T. M. M. Sow, An iterative algorithm for solving equilibrium problems, variational inequality problems and fixed point problems with multivalued quasi-nonexpansive mappings, Appl. Set-Valued Anal. Optim., 1 (2019), 171-185
##[25]
S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331 (2007), 506-515
##[26]
W. Takahashi, M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118 (2003), 417-428
##[27]
M. Tian, B.-N. Jiang, Weak convergence theorem for zero points of inverse strongly monotone mapping and fixed points of nonexpansive mapping in Hilbert space, Optimization, 66 (2017), 1689-1698
##[28]
M. Tian, M. Tong, A self-adaptive Armijo-like step size method for solving monotone variational inequality problems in Hilbert spaces, J. Nonlinear Funct. Anal., 2019 (2019), 1-15
##[29]
S. Wang, A general iterative method for an infinite family of strictly pseudo-contractive mappings in Hilbert spaces, Appl. Math. Lett., 24 (2011), 901-907
##[30]
H.-K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127-1138
##[31]
H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. (2), 66 (2002), 240-256
##[32]
H.-K. Xu, A variable Krasnoselskii--Mann algorithm and the multiple set split feasiblity problem, Inverse Problem, 26 (2006), 2021-2034
##[33]
H.-K. Xu, Iterative methods for the split feasiblity problem in infinite-dimensional Hilbert spaces, Inverse Problem, 26 (2010), 1-17
##[34]
H.-K. Xu, M. A. Alghamdi, N. Shahzad, The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl., 2015 (2015), 1-12
##[35]
Y. Yao, H. Zhou, Y. C. Liou, Strong convergence of modified Krasnoselskii-Mann iterative algorithm for nonexpansive mappings, J. Math. Anal. Appl. Comput., 29 (2009), 383-389
]
The extended Burr XII distribution: properties and applications
The extended Burr XII distribution: properties and applications
en
en
This paper introduces a new four-parameter lifetime model called the
Marshall-Olkin generalized Burr XII (MOGBXII) distribution. We derive some
of its mathematical properties, including quantile and generating functions,
ordinary and incomplete moments, mean residual life, and mean waiting time
and order statistics. The MOGBXII density can be expressed as a linear
mixture of Burr XII densities. The maximum likelihood and least squares
methods are used to estimate the MOGBXII parameters. Simulation results are
obtained to compare the performances of the two estimation methods for both
small and large samples. We empirically illustrate the flexibility and importance of the MOGBXII distribution in modeling various types of lifetime data.
133
146
Ahmed Z.
Afify
Department of Statistics, Mathematics and Insurance
Benha University
Egypt
ahmed.afify@fcom.bu.edu.eg
Ashraf D.
Abdellatif
Department of Technological Management and Information
Higher Technological Institute
Egypt
ashraf_abdellatif@yahoo.com
Burr XII
least squares
maximum likelihood
mean residual life
moments
order statistics
Article.2.pdf
[
[1]
T. H. M. Abouelmagd, S. Al-mualim, A. Z. Afify, M. Ahmad, H. Al-Mofleh, The odd Lindley Burr XII distribution with applications, Pakistan J. Statist., 34 (2018), 15-32
##[2]
T. H. M. Abouelmagd, M. S. Hamed, A. Z. Afify, The extended Burr XII distribution with variable shapes for the hazard rate, Pak. J. Stat. Oper. Res., 13 (2017), 687-698
##[3]
A. Z. Afify, G. M. Cordeiro, M. Bourguignon, E. M. Ortega, Properties of the transmuted Burr XII distribution, regression and its applications, J. Data Sci., 16 (2018), 485-510
##[4]
A. Z. Afify, G. M. Cordeiro, E. M. M. Ortega, H. M. Yousof, N. S. Butt, The four-parameter Burr XII distribution: properties, regression model, and applications, Comm. Statist. Theory Methods, 47 (2018), 2605-2624
##[5]
A. Z. Afify, G. M. Cordeiro, H. M. Yousof, A. Saboor, E. M. M. Ortega, The Marshall-Olkin additive Weibull distribution with variable shapes for the hazard rate, Hacet. J. Math. Stat., 47 (2018), 365-381
##[6]
A. Z. Afify, A. K. Suzuki, C. Zhang, M. Nassar, On threeparameter exponential distribution: properties, Bayesian and non-Bayesian estimation based on complete and censored samples, Commun. Stat. Simul. Comput., 2019 (2019), 1-21
##[7]
M. A. D. Aldahlan, A. Z. Afify, The odd exponentiated half-logistic Burr XII distribution, Pak. J. Stat. Oper. Res., 14 (2018), 305-317
##[8]
A. Y. Al-Saiari, L. A. Baharith, S. A. Mousa, Marshall--Olkin extended Burr Type XII distribution, Int. J. Statist. Prob., 3 (2014), 78-84
##[9]
I. W. Burr, Cumulative frequency functions, Ann. Math. Statistics, 13 (1942), 215-232
##[10]
G. M. Cordeiro, A. Z. Afify, H. M. Yousof, R. R. Pescim, G. R. Aryal, The exponentiated Weibull-H family of distributions: theory and applications, Mediterr. J. Math., 14 (2017), 1-22
##[11]
A. E. Gomes, C. Q. da-Silva, G. M. Cordeiro, Two extended Burr models: Theory and practice, Comm. Statist. Theory Methods, 44 (2015), 1706-1734
##[12]
I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Academic Press, San Diego (2000)
##[13]
R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling failure time data by Lehmann alternatives, Comm. Statist. Theory Methods, 27 (1998), 887-904
##[14]
C.-D. Lai, M. Xie, Stochastic Ageing and Dependence for Reliability, Springer, Berlin (2006)
##[15]
E. T. Lee, J. W. Wang, Statistical methods for survival data analysis, Wiley-Interscience, Hoboken (2003)
##[16]
M. M. Mansour, E. M. Abd Elrazik, A. Z. Afify, M. Ahsanullah, E. Altun, The transmuted transmuted-G family: properties and applications, J. Nonlinear Sci. Appl., 12 (2019), 217-229
##[17]
A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, 84 (1997), 641-652
##[18]
M. E. Mead, A new generalization of Burr XII distribution, J. Stat. Adv. Theory Appl., 12 (2014), 53-73
##[19]
M. E. Mead, A. Z. Afify, On five parameter Burr XII distribution: properties and applications, South African Statist. J., 51 (2017), 67-80
##[20]
P. F. Paranaíba, E. M. M. Ortega, G. M. Cordeiro, M. A. R. de Pascoa, The Kumaraswamy Burr XII distribution: theory and practice, J. Stat. Comput. Simul., 83 (2013), 2117-2143
##[21]
P. F. Paranaíba, E. M. M. Ortega, G. M. Cordeiro, R. R. Pescim, The beta Burr XII distribution with application to lifetime data, Comput. Statist. Data Anal., 55 (2011), 1118-1136
##[22]
A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and Series, Vol. 4, Gordon and Breach Science Publishers, New York (1992)
##[23]
Q. Shao, Notes on maximum likelihood estimation for the threeparameter Burr XII distribution, Comput. Stat. Data Anal., 45 (2004), 675-687
##[24]
P. R. Tadikamalla, A look at the Burr and related distributions, Internat. Statist. Rev., 48 (1980), 337-344
##[25]
H. M. Yousof, A. Z. Afify, S. Nadarajah, G. Hamedani, G. R. Aryal, The Marshall-Olkin generalized-G family of distributions with applications, Statistica, 78 (2018), 273-295
]
Characteristic roots of a second order retarded functional differential equation via spectral-tau method
Characteristic roots of a second order retarded functional differential equation via spectral-tau method
en
en
In this paper, we have found the solution of second-order delay differential equations of retarded type with multiple delays. As well as developing an approximation for finding characteristic roots for such delay differential equations via the method of spectral tau which depends on the basis mixed Fourier basis or shifted Chebyshev polynomials.
147
153
Habeeb Kareem
Abdullah
Department of Mathematics, Faculty of Education for Girls
University of Kufa
Iraq
habeebk.abdullah@uokufa.edu.iq
Amal Khalaf
Haydar
Department of Mathematics, Faculty of Education for Girls
University of Kufa
Iraq
amalkh.hayder@uokufa.edu.iq
Kawther Reyadh
Obead
Department of Mathematics, Faculty of Education for Girls
University of Kufa
Iraq
Linear functional-differential equations
IBVPs for linear higher-order equations
spectral theory of functional-differential operators
Article.3.pdf
[
[1]
H. K. Abdullah, A. K. Haydar, K. R. Obead, Solving of third order retarded dynamical system via lambert W function and stability analysis, World Wide J. Multidisciplin. Res. Develop., 4 (2018), 105-112
##[2]
H. K. Abdullah, A. K. Haydar, K. R. Obead, Solving retarded dynamical system of nth- order and stability analysis via lambert W function, Int. J. Pure Appl. Math., 118 (2018), 2567-2584
##[3]
O. Arino, M. L. Hbid, E. A. Dads, Delay differential equations and application, Springer, The Nethelands (2006)
##[4]
A. Bellen, S. Maset, Numerical solution of constant coefficient linear delay differential equations as abstract Cauchy problems, Numer. Math., 84 (2000), 351-374
##[5]
J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publ. Inc., Mineola (2001)
##[6]
S.-T. Chen, S.-P. Hsu, H.-N. Huang, B.-Y. Yang, Time response of a scalar dynamical system with multiple delays via Lambert W functions, arXiv, 2016 (2016), 1-24
##[7]
L. E. Èlʹsgolʹts, S. B. Norkin, Introduction to the theory and application of differential equations with deviating arguments, Academic Press, New York-London (1973)
##[8]
T. Koto, Method of lines approximations of delay differential equations, Comput. Math. Appl., 48 (2004), 45-59
##[9]
M. S. Lee, C. S. Hsu, On the $\tau$-decomposition method of stability analysis for retarded dynamical systems, SIAM J. Control, 7 (1969), 242-259
##[10]
T. X. Li, B. Baculíková, J. Džurina, C. H. Zhang, Oscillation of fourth-order neutral differential equations with $p$--Laplacian like operators, Bound. Value Probl., 2014 (2014), 1-9
##[11]
Q. Li, R. Wang, F. Chen, T. X. Li, Oscillation of second-order nonlinear delay differential equations with nonpositive neutral coefficients, Adv. Difference Equ., 2015 (2015), 1-7
##[12]
I. Mezo, G. Keady, Some physical applications of generalized Lambert functions, Eur. J. Phys., 37 (2016), 1-10
##[13]
K. Schmitt, Delay and functional differential equations and their applications, Academic Press, New York-London (1972)
##[14]
S. S. Sujitha, D. Piriadarshani, A Lambert W function a approach for solution of second order delay differential equation as a special case of the one-mass system controlled over the network, Int. J. Mech. Eng. Tech., 8 (2017), 502-511
##[15]
C. P. Vyasarayani, S. Subhash, T. Kalmar-Nagy, Spectral approximations for characteristic roots of delay differential equations, Int. J. Dynam. Control., 2 (2014), 126-132
##[16]
P. Wahi, A. Chatterjee, Galerkin projections for delay differential equations, J. Dyn. Syst. Meas. Control., 127 (2005), 80-87
]
On the convergence of double Sumudu transform
On the convergence of double Sumudu transform
en
en
In this article, we have studied the convergence properties of double Sumudu transformation, and we presented the results in the form of theorems on convergence, absolute convergence, and uniform convergence of Double Sumudu transformation. The Double Sumudu transform of double Integral has also been discussed for integral evaluation. Finally, we have solved a Volterra integro-partial differential equation by using Double Sumudu transformation.
154
162
Zulfiqar
Ahmed
Department of Computer Science
GIFT University
Pakistan
dr.zulfiqar.ahmed@hotmail.com
Muhammad Imran
Idrees
Department of Mathematics
Lahore Garrison University
Pakistan
hefacademy@gmail.com
Fethi Bin Muhammad
Belgacem
Department of Mathematics, Faculty of Basic Education
PAAET
Kuwait
fbmbelgacem@gmail.com
Zahida
Perveen
Department of Mathematics
Lahore Garrison University
Pakistan
drzahida95@gmail.com
Double Sumudu transform
inverse Sumudu transform
integro-partial differential equations
Article.4.pdf
[
[1]
Z. Ahmed, M. Kalim, A new transformation technique to find the analytical solution of general second order linear ordinary differential equation, Int. J. Adv. Appl. Sci., 5 (2018), 109-114
##[2]
F. B. M. Belgacem, Introducing and analysing deeper Sumudu properties, Nonlinear Stud., 13 (2006), 23-41
##[3]
F. B. M. Belgacem, Applications of Sumudu transform to indefinite periodic parabolic equations, 6th International Conference on Mathematical Problems in Engineering and Aerospace Sciences (Cambridge, U. K.), 2007 (2007), 51-60
##[4]
F. B. M. Belgacem, Sumudu applications to Maxwell's equations, PIERS Online, 5 (2009), 355-360
##[5]
F. B. M. Belgacem, Sumudu transform applications to Bessel's Functions and Equations, Appl. Math. Sci., 4 (2010), 3665-3686
##[6]
F. B. M. Belgacem, E. H. N. Al-Shemas, Towards a Sumudu based estimation of large scale disasters environmental fitness changes adversely affecting population dispersal and persistence, AIP Conference Proceedings, 2014 (2014), 1442-1449
##[7]
F. B. M. Belgacem, A. A. Karaballi, Sumudu transform fundamental properties investigations and applications, J. Appl. Math. Stoch. Anal., 2006 (2006), 1-23
##[8]
F. B. M. Belgacem, A. A. Karaballi, S. L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Math. Probl. Eng., 2003 (2003), 103-118
##[9]
F. B. M. Belgacem, R. Silabarasan, A distinctive Sumudu treatment of trigonometric functions, J. Comput. Appl. Math., 312 (2017), 74-81
##[10]
F. B. M. Belgacem, R. Silambarasan, Sumudu transform of Dumont bimodular Jacobi elliptic functions for arbitrary powers, AIP Conference Proceedings, 2017 (2017), 1-13
##[11]
R. R. Dhunde, G. L. Waghmare, On Some Convergence Theorems of Double Laplace Transform, J. Infor. Math. Sci., 6 (2014), 45-54
##[12]
P. Goswami, F. B. M. Belgacem, Solving Special Fractional Differential Equations by Sumudu Transform, AIP Conference Proceedings, 2012 (2012), 111-115
##[13]
M. I. Idrees, Z. Ahmed, M. Awais, Z. Perveen, On the convergence of double Elzaki transform, Int. J. Adv. Appl. Sci., 5 (2018), 19-24
##[14]
M. Mohseni Moghadam, H. Saeedi, Application of differential transforms for solving the Volterra integro-partial differential equations, Iran. J. Sci. Technol. Trans. A Sci., 34 (2010), 59-70
##[15]
J. L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag, New York (1999)
##[16]
W. F. Trench, Functions defined by Improper Integrals, Trinity University (Department of Mathematics), San Antonio (2012)
##[17]
G. K. Watugala, Sumudu transform---a new integral transform to solve differential equations and control engineering problems, Math. Engrg. Indust., 6 (1998), 319-329
##[18]
D. V. Widder, Advanced Calculus, Prentice-Hall, Englewood Cliffs (1961)
]