]>
2021
14
5
ISSN 2008-1898
84
The exponentiated half-logistic odd lindley-G family of distributions with applications
The exponentiated half-logistic odd lindley-G family of distributions with applications
en
en
A new generalized family of models called the Exponentiated Half Logistic Odd Lindley-G (EHLOL-G) distribution is developed and presented. Some explicit expressions for the structural properties including moments, conditional moments, mean and median deviations, distribution of the order statistics, probability weighted moments and R\'enyi entropy are derived. We applied the maximum likelihood estimation technique to estimate the parameters of the model and a simulation study is conducted to examine the efficiency of the maximum likelihood estimators. The special case of the EHLOL-Weibull (EHLOL-W) distribution is fitted to two real data sets.
287
309
Whatmore
Sengweni
Department of Mathematical Statistics
Botswana International University of Science and Technology
Botswana
whatiegumbo@gmail.com
Brodrick
Oluyede
Department of Mathematical Statistics
Botswana International University of Science and Technology
Botswana
oluyedeo@biust.ac.bw
Boikanyo
Makubate
Department of Mathematical Statistics
Botswana International University of Science and Technology
Botswana
makubateb@biust.ac.bw
Generalized-G distribution
exponentiated distribution
half logistic distribution
odd-lindley distribution
maximum likelihood estimation
Article.1.pdf
[
[1]
A. Z. Afify, M. Alizadeh, M. Zayed, T. G. Ramires, F. Louzada, The Odd Log-Logistic Exponentiated Weibull Distribution: Regression Modelling, Properties and Applications, Iran. J. Sci. Tech., 42 (2018), 2273-2288
##[2]
A. Z. Afify, E. Altun, M. Alizadeh, G. Ozel, G. G. Hamedani, The odd exponentiated half-logistic-G family: properties, characterizations and applications, Chil. J. Stat., 8 (2017), 65-91
##[3]
J. Chambers, W. Cleveland, B. Kleiner, J. Tukey, Graphical Methods for Data Analysis, Chapman and Hall, London (1983)
##[4]
G. Chen, N. Balakrishnan, A General Purpose Approximate Goodness-of-fit Test, J. Qual. Tech., 27 (1995), 154-161
##[5]
G. M. Corderio, A. Z. Afify, H. M. Yousof, R. R. Pescim, G. R. Aryal, The Exponentiated Weibull-H Family of Distributions: Theory and Applications, Mediterr. J. Math., 14 (2017), 1-22
##[6]
G. M. Cordeiro, M. Alizadeh, P. R. D. Marinho, The Type I Half-Logistic Family of Distributions, J. Stat. Comput. Simul., 86 (2016), 707-728
##[7]
G. M. Cordeiro, M. Alizadeh, E. M. M. Ortega, The Exponentiated Half-Logistic Family of Distributions: Properties and Applications, J. Probab. Stat., 2014 (2014), 1-21
##[8]
G. M. Cordeiro, E. M. M. Ortega, S. Nadarajaah, The Kumaraswamy Weibull Distribution with Application to Failure Data, J. Franklin Inst., 347 (2010), 1399-1429
##[9]
E. El-sayed, E. Mahmoud, Kumaraswamy Type 1 Half Logistic Family of Distributions with Applications, Gazi Unive. J. Sci., 32 (2019), 333-349
##[10]
F. Gomes-Silva, A. Percontini, E. de Brito, M. W. Ramos, R Venancio, G. M. Cordeiro, The odd Lindley-G family of distributions, Aust. J. Stat., 46 (2017), 65-87
##[11]
A. J. Gross, V. A. Clark, Survival Distributions: Reliability Applications in the Biomedical Sciences, Wiley, New York (1975)
##[12]
B. O. Oluyede, T. Yang, A New Class of Generalized Lindley Distributions with applcations, J. Stat. Comput. Simul., 85 (2015), 2072-2100
##[13]
A. Rényi, On Measures of Entropy and Information, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Univ. California Press, Berkeley, 1961 (1961), 547-561
##[14]
R. L. Smith, J. C. Naylor, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, J. Roy. Statist. Soc. Ser. C, 36 (1987), 358-369
##[15]
M. H. Tahir, G. M. Cordeiro, M. Mansoor, M. Zubair, The Weibull-Lomax Distribution: Properties and Applications, Hacet. J. Math. Stat., 44 (2015), 461-480
]
Approximation by a new generalization of Szász-Mirakjan operators via \((p,q)\)-calculus
Approximation by a new generalization of Szász-Mirakjan operators via \((p,q)\)-calculus
en
en
In this work, we obtain the approximation properties of a new generalization
of Szász-Mirakjan operators based on post-quantum calculus. Firstly, for
these operators, a recurrence formulation for the moments is obtained, and up to the fourth degree, the central
moments are examined. Then, a local approximation result is attained. Furthermore, the degree of
approximation in respect of the modulus of continuity on a finite closed
set and the class of Lipschitz are
computed. Next, the weighted uniform approximation on an unbounded interval
is showed, and by the modulus of continuity, the order of convergence
is estimated. Lastly, we proved the Voronovskaya type theorem and gave some illustrations to compare the related operators' convergence to a certain function.
310
323
Reşat
Aslan
Provincial Directorate of Labor and Employment Agency
Turkey
resat63@hotmail.com
Aydin
Izgi
Department of Mathematics, Faculty of Sciences and Arts
Harran University
Turkey
aydinizgi@yahoo.com
Weighted approximation
Szász-Mirakjan operators
modulus of continuity
\((p,q)\)-calculus
Article.2.pdf
[
[1]
T. Acar, $(p,q)$-generalization of Szasz--Mirakyan operators, Math. Methods Appl. Sci., 39 (2016), 2685-2695
##[2]
M. Ahasan, M. Mursaleen, Generalized Szasz-Mirakjan type operators via $q$-calculus and approximation properties, Appl. Math. Comput., 371 (2020), 1-13
##[3]
A. Alotaibi, M. Nasiruzzaman, M. Mursaleen, A Dunkl type generalization of Szasz operators via post-quantum calculus, J. Inequl. Appl., 2018 (2018), 1-15
##[4]
F. Altomare, M. Campiti, Korovkin-type approximation theory and its applications, Walter de Gruyter, Berlin (1994)
##[5]
A. Aral, A generalization of Szasz--Mirakyan operators based on $q$-integers, Math. Comput. Modelling, 47 (2008), 1052-1062
##[6]
A. Aral, D. Inoan, I. Raşa, On the generalized Szasz--Mirakyan operators, Results Math., 65 (2014), 441-452
##[7]
A. Aral, G. Ulusoy, E. Deniz, A new construction of Szasz-Mirakyan operators, Numer. Algorithms, 77 (2017), 313-326
##[8]
R. Aslan, A. Izgi, Ağırlıklı Uzaylarda q-Szász-Kantorovich-Chlodowsky Operatörlerinin Yaklaşımları, Erciyes Univer. J. Inst. Sci. Tech., 36 (2020), 138-150
##[9]
B. Çekim, Ü. Dinlemez Kantar, İ. Yüksel, Dunkl generalization of Szasz beta-type operators, Math. Methods Appl. Sci., 40 (2017), 7697-7704
##[10]
A. R. Devdhara, V. N. Mishra, Stancu variant of $(p, q)$ Szasz--Mirakyan operators, J. Inequal. Spec. Funct., 8 (2017), 1-7
##[11]
R. A. DeVore, G. G. Lorentz, Constructive Approximation, Springer, Berlin (1993)
##[12]
O. Duman, M. A. Özarslan, B. D. Vecchia, Modified Szasz-Mirakjan-Kantorovich operators preserving linear functions, Turkish J. Math., 33 (2009), 151-158
##[13]
A. D. Gadzhiev, Theorems of korovkin type, Mat. Zametki, 20 (1976), 995-998
##[14]
M. N. Hounkonnou, J. D. B. Kyemba, $R(p,q)$-calculus: differentiation and integration, SUT J. Math., 49 (2013), 145-167
##[15]
N. İspir, On modified baskakov operators on weighted spaces, Turkish J. Math., 25 (2001), 355-365
##[16]
N. İspir, C. Atakut, Approximation by modified Szasz-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 571-578
##[17]
R. Jagannathan, K. S. Rao, Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, arXiv, 2006 (2006), 1-16
##[18]
D. Karahan, A. Izgi, On approximation properties of $(p,q)$-Bernstein operators, Eur. J. Pure Appl. Math., 11 (2018), 457-467
##[19]
G. Krech, Some approximation results for operators of Szasz-Mirakjan-Durrmeyer type, Math. Slovaca, 66 (2016), 945-958
##[20]
A. Lupaş, A $q$-analogue of the bernstein operators, Seminar on Numerical and Statistical Calculus (Cluj-Napoca), 1987 (1987), 85-92
##[21]
N. I. Mahmudov, On $q$-parametric Szasz-Mirakjan operators, Mediterr. J. Math., 7 (2010), 297-311
##[22]
N. Mahmudov, V. Gupta, On certain $q$-analogue of Szasz Kantorovich operators, J. Comput. Appl. Math., 37 (2010), 407-419
##[23]
G. M. Mirakjan, Approximation of continuous functions with the aid of polynomials, In Dokl. Acad. Nauk SSSR, 31 (1941), 201-205
##[24]
V. N. Mishra, S. Pandey, Certain modifications of $(p, q)$-Szasz-Mirakyan operator, Azerb. J. Math., 9 (2019), 81-95
##[25]
M. Mursaleen, A. A. H. Al-Abied, A. Alotaibi, On $(p,q)$-Szasz-Mirakyan operators and their approximation properties, J. Inequal. Appl., 2017 (2017), 1-12
##[26]
M. Mursaleen, A. Al-Abied, M. Nasiruzzaman, Modified $(p,q)$-bernstein-schurer operators and their approximation properties, Cogent Math., 3 (2016), 1-15
##[27]
M. Mursaleen, A. Alotaibi, K. J. Ansari, On a Kantorovich Variant of $(p,q)$-Szasz-Mirakjan Operators, J. Funct. Spaces, 2016 (2016), 1-9
##[28]
M. Mursaleen, K. J. Ansari, A. Khan, On $(p,q)$-analogue of bernstein operators, Appl. Math. Comput., 266 (2015), 847-882
##[29]
M. Mursaleen, A. Naaz, A. Khan, Improved approximation and error estimations by king type $(p,q)$-Szasz-Mirakjan kantorovich operators, Appl. Math. Comput., 348 (2019), 175-185
##[30]
M. Mursaleen, S. Rahman, Dunkl generalization of $q$-Szasz-Mirakjan operators which preserve x2, Filomat, 32 (2018), 733-747
##[31]
M. Örkcü, O. Doğru, Weighted statistical approximation by kantorovich type $q$-Szasz-Mirakjan operators, Appl. Math. Comput., 217 (2011), 7913-7919
##[32]
N. Ousman, A. Izgi, Szasz operatorlerinin bir genellestirmesi, In: Abstracts of the 32nd National Mathematics Symposium, Ondokuz Mayis University, Samsun, Turkey, 31 August-3, 2019 (2019), -
##[33]
G. M. Phillips, Bernstein polynomials based on the $q$-integers, Ann. Num. Math., 4 (1997), 511-518
##[34]
P. N. Sadjang, On the fundamental theorem of $(p,q)$-calculus and some $(p,q)$-taylor formulas, Results Math., 73 (2018), 1-21
##[35]
V. Sahai, S. Yadav, Representations of two parameter quantum algebras and $p,q$-special functions, J. Math. Anal. Appl., 335 (2007), 268-279
##[36]
O. Szasz, Generalization of S. Bernstein's polynomials to the infinite interval, J. Research Nat. Bur. Standards, 45 (1950), 239-245
##[37]
D. X. Zhou, Weighted approximation by Szasz-Mirakjan operators, J. Approx. Theory, 76 (1994), 393-402
]
Generalized Bernstein-Chlodowsky-Kantorovich type operators involving Gould-Hopper polynomials
Generalized Bernstein-Chlodowsky-Kantorovich type operators involving Gould-Hopper polynomials
en
en
In the present article, we establish a link between the theory of positive linear operators and the orthogonal polynomials by defining Bernstein-Chlodowsky-Kantorovich operators based on Gould-Hopper polynomials (orthogonal polynomials) and investigate the degree of convergence of these operators for unbounded continuous functions having a polynomial growth. In this connection, the moments of the operators are derived first, and then the approximation degree of the considered operators is established by means of the complete and the partial moduli of continuity. Next, we focus on the rate of convergence of these operators for functions in a weighted space. The associated Generalized Boolean Sum (GBS) operator of the operators under study is defined, and the degree of approximation is studied with the aid of the mixed modulus of smoothness and the Lipschitz class of Bögel continuous functions.
324
338
P. N.
Agrawal
Department of Mathematics
Indian Institute of Technology Roorkee
India
Agrawalpnappfma@iitr.ac.in
Sompal
Singh
Department of Mathematics
Indian Institute of Technology Roorkee
India
ssingh@ma.iitr.ac.in
Gould-Hopper polynomials
modulus of continuity
Peetre's K-functional
Bögel continuous functions
mixed modulus of smoothness
Article.3.pdf
[
[1]
A. M. Acu, T. Acar, C.-V. Muraru, V. A. Radu, Some approximation properties by a class of bivariate operators, Math. Methods Appl. Sci., 42 (2019), 5551-5565
##[2]
A. M. Acu, M. Dancs, V. A. Radu, Representations for the inverses of certain operators,, Commun. Pure Appl. Anal., 19 (2020), 4097-4109
##[3]
P. N. Agrawal, B. Baxhaku and R. Chauhan, The approximation of bivariate Chlodowsky-Sz´asz-Kantorovich-Charliertype operators, J. Inequal. Appl., 2017 (2017), 1-23
##[4]
P. N. Agrawal, N. Ispir, Degree of approximation for bivariate Chlodowsky-Szasz-Charlier type operators, Results Math., 69 (2016), 369-385
##[5]
C. Badea, I. Badea, C. Cottin, H. H. Gonska, Notes on the degree of approximation of B-continuous and B-differentiable functions,, J. Approx. Theory Appl., 4 (1988), 95-108
##[6]
C. Badea, I. Badea, H. H. Gonska, A test function theorem and approximation by pseudopolynomials, Bull. Austral. Math. Soc., 34 (1986), 53-64
##[7]
C. Badea, C. Cottin, Korovkin-type theorems for generalized Boolean sum operators, Approximation theory (Kecskemet,1990), Colloq. Math. Soc. Janos Bolyai, 58 (1991), 51-67
##[8]
B. Baxhaku, A. Berisha, The approximation Szasz-Chlodowsky type operators involving Gould-Hopper type polynomials, Abstr. Appl. Anal., 2017 (2017), 1-8
##[9]
K. Bogel, Mehrdimensionale Differentiation von Funktionen mehrerer reeller Veranderlichen, J. Reine Angew. Math., 170 (1934), 197-217
##[10]
K. Bogel, Uber mehrdimensionale Differentiation, Integration und beschrankte Variation, J. Reine Angew. Math., 173 (1935), 5-30
##[11]
P. L. Butzer, H. Berens, Semi-groups of Operators and Approximation, Springer-Verlag, New York (1967)
##[12]
X. Chen, J. Tan, Z. Liu, J. Xie, Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl., 450 (2017), 244-261
##[13]
E. Dobrescu, I. Matei, The approximation by Bernˇste˘ın type polynomials of bidimensionally continuous functions, An. Univ. Timisoara Ser. Sti. Mat.-Fiz., 4 (1966), 85-90
##[14]
A. D. Gadziev, Positive linear operators in weighted spaces of functions of several variables (Russian), Izv. Akad. Nauk Azerbaıdzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk, 1 (1980), 32-37
##[15]
A. D. Gadziev, H. Hacisalihoglu, Convergence of the sequences of linear positive operators, Ankara University Press, Ankara, , Turkey (1995)
##[16]
V. Gupta, T. M. Rassias, P. N. Agrawal, A. M. Acu, Recent Advances in Constructive Approximation Theory,, Springer, Cham (2018)
##[17]
N. Ispir, C. Atakut, Approximation by modified Szasz-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 571-578
##[18]
A. Kajla, T. Acar, Modified α-Bernstein operators with better approximation properties, Ann. Funct. Anal., 10 (2019), 570-582
##[19]
M. Sidharth, A. M. Acu, P. N. Agrawal, Chlodowsky-Szasz-Appell-type operators for functions of two variables, Ann. Funct. Anal., 8 (2017), 446-459
]
Asymptotic behavior of attracting and quasi-invariant sets of impulsive stochastic partial integrodifferential equations with delays and Poisson jumps
Asymptotic behavior of attracting and quasi-invariant sets of impulsive stochastic partial integrodifferential equations with delays and Poisson jumps
en
en
This paper is concerned with a class of impulsive stochastic partial integrodifferential equations (ISPIEs) with delays and Poisson jumps. First, using the resolvent operator technique and contraction mapping principle, we can directly prove the existence and uniqueness of the mild solution for the system mentioned above. Then we develop a new impulsive integral inequality to obtain the global, both \(p^{\rm th}\) moment exponential stability and almost surely exponential stability of the mild solution is established with sufficient conditions. Also, a numerical example is provided to validate the theoretical result.
339
350
K.
Ramkumar
Department of Mathematics
PSG College of Arts and Science
India
ramkumarkpsg@gmail.com
K.
Ravikumar
Department of Mathematics
PSG College of Arts and Science
India
ravikumarkpsg@gmail.com
Dimplekumar
Chalishajar
Department of Mathematics and Computer science, Mallory Hall
Virginia Military Institute
USA
chalishajardn@vmi.edu
A.
Anguraj
Department of Mathematics
PSG College of Arts and Science
India
angurajpsg@yahoo.com
Exponential stability
almost surely exponential stability
mild solution
attracting set
quasi-invariant set
Poisson jumps
resolvent operator
Article.4.pdf
[
[1]
A. Anguraj, K. Ravikumar, Existence and stability of impulsive stochastic partial neutral functional differential equations with infinite delays and Poisson jumps, Discontinuity, Nonlinearity, and Complexity, 9 (2020), 245-255
##[2]
A. Anguraj, K. Ramkumar, E. M. Elsayed, Existence, uniqueness and stability of impulsive stochastic partial neutral functional differential equations with infinite delays driven by a fractional Brownian motion, Discontinuity, Nonlinearity, and Complexity, 9 (2020), 327-337
##[3]
D. Applebaum, Levy processes and stochastic calculus, Cambridge University Press, Cambridge (2009)
##[4]
G. Arthi, J. H. Park, H. Y. Jang, Exponential stability for second order neutral stochastic differential equations with impulses, Internat. J. Contro, 88 (2015), 1300-1309
##[5]
T. Caraballo, K. Liu, Exponential stability of mild solutions of stochastic partial differential equations with delays, Stochastic Anal. Appl., 17 (1999), 743-763
##[6]
D. Chalishajar, K. Ravikumar, A. Anguraj, Impulsive-integral inequalities for attracting and quasi-invariant sets of neutral stochastic partial functional integrodifferential equations with impulsive effects, J. Nonlinear Sci. Appl., 13 (2020), 284-292
##[7]
H. Chen, Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays, Statist. Probab. Lett., 80 (2010), 50-56
##[8]
H. Chen, The existence and exponential stability stability for neutral stochastic partial differential equations with infinite delay and Poisson jump, Indian J. Pure Appl. Math., 46 (2015), 197-217
##[9]
G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge (1992)
##[10]
P. Duan, Y. Ren, Attracting and quasi-invariant sets of neutral stochastic integrodifferential equations with impulses driven by fBm, Adv. Differ. Equ, 2017 (2017), 1-15
##[11]
R. C. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., 273 (1982), 333-349
##[12]
D. D. Huan, R. P. Agarwal, Global attracting and quasi-invariant sets for stochastic Volterra-Levin equations with jumps, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal., 21 (2014), 343-353
##[13]
D. D. Huan, R. P. Agarwal, Asymptotic behavior, attracting and quasi-invariant sets for impulsive neutral SPFDE driven by Levy noise, Stoch. Dyn., 18 (2018), 1-21
##[14]
C. Knoche, Mild solutions of SPDEs driven by Poisson noise in infinite dimensions and their dependence on initial conditions, Thesis dissertation, Bielefeld University (2005)
##[15]
V. Laksmikantham, D. D. Baınov, P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore (1989)
##[16]
B. Li, The attracting set for impulsive stochastic difference equations with continuous time, Appl. Math. Lett., 25 (2012), 1166-1171
##[17]
Z. Li, Global attracting and quasi-invariant sets of impulses neutral stochastic functional differential equations driven by fBm, Neurocomputing, 117 (2016), 620-627
##[18]
D. Li, D. Xu, Existence and global attractivity of periodic solution for impulsive stochastic Volterra-Levin equations, Electron. J. Qual. Theory Differ. Equ., 2012 (2012), 1-12
##[19]
K. Liu, A. Truman, A note on almost sure exponential stability for stochastic partial functional differential equations, Statist. Probab. Lett., 50 (2000), 273-278
##[20]
S. Long, L. Teng, D. Xu, Global attracting set and stability of stochastic neutral partial functional differential equations with impulses, Statist. Probab. Lett., 82 (2012), 1699-1709
##[21]
B. Øksendal, Stochastic Differential Equations, Springer, Berlin, Heidelberg (2003)
##[22]
K. Ramkumar, A. Anguraj, Impulsive-integral inequalities for attracting and quasi-invariant sets of neutral stochastic integrodifferential equations with impulsive effects, J. Appl. Nonlinear Dyn., 9 (2020), 513-523
##[23]
L. Wang, D. Li, Impulsive-integral inequalities for attracting and quasi-invariant sets of impulsive stochastic partial differential equations with infinite delays, J. Inequal. Appl., 2013 (2013), 1-11
]
New approach for structural behavior of variables
New approach for structural behavior of variables
en
en
The main scenario of the present paper is to introduce certain approach of variables by setting the structural behavior of fractional inequalities. Some new structural properties will be established concerning them.
351
358
Abdul Hamid
Ganie
Basic Science Department, College of Science and Theoretical Studies
Saudi Electronic University
Kingdom of Saudi Arabia
a.ganie@seu.edu.sa
Fractional notion
variables
Lebesgue measurable functions
Article.5.pdf
[
[1]
G. Anastassiou, M. R. Hooshmandasl, A. Ghasemi, F. Moftakharzadeh, Montgomery identities for fractional integrals and related fractional inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 1-6
##[2]
R. Aziz, C. K. Verma, N. Srivastava, A novel approach for dimension reduction of microarray, Comput. Biol. Chem., 71 (2017), 161-169
##[3]
R. Aziz, C. K. Verma, N. Srivastava, Artificial Neural Network Classification of High Dimensional Data with Novel Optimization Approach of Dimension Reduction, Ann. Data. Sci., 5 (2018), 615-635
##[4]
N. S. Barnett, P. Cerone, S. S. Dragomir, J. Roumeliotis, Some inequalities for the expectation and variance of a random variable whose PDF is n-time differentiable, J. Inequal. Pure Appl. Math., 1 (2000), 1-13
##[5]
N. S. Barnett, S. S. Dragomir, R. P. Agarwal, Some inequalities for probability, expectation, and variance of random variables defined over a finite interval, Comput. Math. Appl., 43 (2002), 1319-1357
##[6]
S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 1-5
##[7]
R. L. Blutzer, P. J. Torvik, On the fractional calculus model of viscoelastic behaviour, J. Rheol., 30 (1996), 133-155
##[8]
Z. Dahmani, Fractional integral inequalities for continuous random variables, Malaya J. Mat., 2 (2014), 172-179
##[9]
D. Fathima, A. H. Ganie, A. Antesar, Certain sequence spaces using ∆-operator, Adv. Stud. Contemp. Math. (Kyungshang), 30 (2020), 17-27
##[10]
A. H. Ganie, A. Aldawoud, Certain sequence spaces using ∆-operator, Adv. Stud. Contemp. Math, 30 (2020), 17-27
##[11]
M. A. Hammad, A. Awad, R. Khalil, E. Aldabbas, Fractional distributions and probability density functions of random variables generated using FDE, J. Math. Comput. Sci, 10 (2020), 522-534
##[12]
T. Jonsson, J. Yngvason, Waves and Distributions, World Scientific, New Jersey (1995)
##[13]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006)
##[14]
P. Kumar, Moments inequalities of a random variable defined over a finite interval, J. Inequal. Pure Appl. Math., 3 (2002), 1-11
##[15]
P. A. Naik, K. M. Owolabi, M. Yavuz, J. Zu, Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos Solitons Fractals, 140 (2020), 1-13
##[16]
P. A. Naik, J. Zu, K. M. Owolabi, Global Dynamics of a fractional order model for the transmission of HIV Epidemic with optimal control, Chaos Solitons Fractals, 138 (2020), 1-24
##[17]
P. A. Naik, J. Zu, K. M. Owolabi, Modeling the Mechanics of Viral Kinetics under Immune Control during Primary Infection of HIV-1 with Treatment in Fractional Order, Phys. A, 545 (2020), 1-19
##[18]
M. Niezgoda, New bounds for moments of continuous random variables, Comput. Math. Appl., 60 (2010), 3130-3138
##[19]
F. Qi, A.-J. Li, W.-Z. Zhao, D.-W. Niu, J. Cao, Extensions of several integral inequalities, J. Inequal. Pure Appl. Math., 7 (2006), 1-6
##[20]
S. Salas¸, Y. Erdas¸, T. Toplu, E. Set, On Some Generalized Fractional Integral Inequalities for p-Convex Functions, Fractal Fract., 3 (2019), 1-9
##[21]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, Switzerland (1993)
##[22]
R. Sharma, S. Devi, G. Kapoor, S. Ram, N. S. Barnett, A brief note on some bounds connecting lower order moments for random variables defined on a finite interval, Int. J. Theor. Appl. Sci., 1 (2009), 83-85
##[23]
M. Tomar, S. Maden, E. Set, (k, s)-Riemann-Liouville fractional integral inequalities for continuous random variables, Arab. J. Math., 6 (2017), 55-63
##[24]
M. I. Troparevsky, S. A. Seminara, M. A. Fabio, A Review on Fractional Differential Equations and a Numerical Method to Solve Some Boundary Value Problems, Nonlinear Syst, (2019)
##[25]
H. Yildirim, Z. Kirtay, Ostrowski inequality for generalized fractional integral and related inequalities, Malaya J. Mat., 2 (2014), 322-329
]
Iterative solution of split equilibrium and fixed point problems in real Hilbert spaces
Iterative solution of split equilibrium and fixed point problems in real Hilbert spaces
en
en
In this article, we introduce a hybrid iteration involving inertial-term for split equilibrium problem and fixed point for a finite family of asymptotically
strictly pseudocontractive mappings. We prove that the sequence converges strongly to a solution of split equilibrium problem and a common fixed point of a finite family of asymptotically strictly
pseudocontractive mappings. The results proved extend and improve recent results of Chang et al. [S. S. Chang, H. W. J. Lee, C. K. Chan, L. Wang, L. J. Qin, Appl. Math. Comput., \(\bf 219\) (2013), 10416--10424], Dewangan et al. [R. Dewangan, B. S. Thakur, M. Postolache, J. Inequal. Appl., \(\bf 2014\) (2014), 11 pages],
and many others.
359
371
J. N.
Ezeora
Department of Mathematics and Statistics
University of Port Harcpourt
Nigeria
jeremiah.ezeora@uniport.edu.ng
P. C.
Jackreece
Department of Mathematics and Statistics
University of Port Harcpourt
Nigeria
prebo.jackreece@uniport.edu.ng
Total asymptotically strict pseudocontractive mapping
split equilibrium problem
fixed point problem
inertial-step
bounded linear operator
Article.6.pdf
[
[1]
Y. I. Alber, C. E. Chidume, H. Zegeye, Approximating fixed points of total asymptotically nonexpansive mappings, Fixed Point Theory Appl., 2006 (2006), 1-20
##[2]
P. N. Anh, A hybrid extragradient method extended to fixed point problems and equilibrium problems, Optimization, 62 (2013), 271-283
##[3]
K. Aoyama, F. Kohsaka, W. Takahashi, Three generalizations of firmly nonexpansive mappings: their relations and continuity properties, J. Nonlinear Convex Anal., 10 (2009), 131-147
##[4]
Y. Arfat, P. Kumam, P. Sa Ngiamsunthorn, M. A. A. Khan, H. Sarwar, H. Fukhar-ud-Din, Approximation results for split equilibrium problems and fixed point problems of nonexpansive semigroup in Hilbert spaces, Adv. Difference Equ., 2020 (2020), 1-21
##[5]
A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202
##[6]
E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student., 63 (1994), 123-145
##[7]
F. E. Browder, W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197-228
##[8]
C. Byrne, Iterative oblique projection onto convex subsets and the split feasibility problems, Inverse Problem, 18 (2002), 441-453
##[9]
L.-C. Ceng, J.-C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., 214 (2008), 186-201
##[10]
Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353-2365
##[11]
Y. Censor, T. Elfving, A multi-projection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239
##[12]
Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multi-set split feasibility problem and its applications, Inverse Problem, 21 (2005), 2071-2084
##[13]
Y. Censor, A. Motov, A. Segal, Pertured projections and subgradient projections for the multiple-sets split feasibility problem, J. Math. Anal. Appl., 327 (2007), 1244-1256
##[14]
S. S. Chang, H. W. J. Lee, C. K. Chan, L. Wang, L. J. Qin, Split feasibility problem for Quasi-nonexpansive multi-valued mappings and total asymptotically strict pseudo contractive mappings, Appl. Math. Comput., 219 (2013), 10416-10424
##[15]
C. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Springer Verlag Series: Lecture Notes in Mathematics, Berlin (2009)
##[16]
P. L. Combettes, The convex feasibility problem in image recovery, Adv. Imaging Electron Phys., 95 (1996), 155-270
##[17]
P. L. Combettes, S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136
##[18]
R. Dewangan, B. S. Thakur, M. Postolache, A hybrid iteration for asymptotically strictly pseudocontractive mappings, J. Inequal. Appl.,, 2014 (2014), 1-11
##[19]
J. N. Ezeora, Iterative Solution of Fixed Points Problem, System of Generalized Mixed Equilibrium Problems and Variational Inclusion Problems, Thai J. Math., 12 (2014), 223-244
##[20]
J. N. Ezeora, R. C. Ogbonna, Split feasibilty problem for countable family of multi-valued nonlinear mappings, Mathematicki Vesnik, 70 (2018), 233-242
##[21]
D. V. Hieu, An inertial-like proximal algorithm for equilibrium problems, Math. Methods Oper. Res., 88 (2018), 399-415
##[22]
C. Izuchukwu, F. O. Isiogugu, C. C. Okeke, A new viscosity-type iteration for a finite family of split variational inclusion and fixed point problems between Hilbert and Banach spaces, J. Inequal. Appl., 2019 (2019), 1-33
##[23]
C. Izuchukwu, C. C. Okeke, F. O. Isiogugu, A viscosity iterative technique for split variational inclusion and fixed point problems between a Hilbert space and a Banach space, J. Fixed Point Theory Appl., 20 (2018), 1-25
##[24]
Q. Liu, Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings, Nonlinear Anal., 26 (1996), 1835-1842
##[25]
L. V. Long, D. V. Thong, V. T. Dung, New algorithms for the split variational inclusion problems and application to split feasibility problems, Optimization, 68 (2019), 2335-2363
##[26]
Z. Ma, L. Wang, An algorithm with strong convergence for the split common fixed point problem of total asymptotically strict pseudocontraction mappings,, J. Inequal. Appl., 2015 (2015), 1-13
##[27]
E. Masad, S. Reich, A note on the multiple-set split feasibility problem in Hilbert spaces, J. Nonlinear Convex Anal., 8 (2007), 367-371
##[28]
S. Plubtieng, K. Sombut, Weak convergence theorems for a system of mixed equilibrium problems and nonspreading mappings in a Hilbert space, J. Inequal. Appl., 2010 (2010), 1-12
##[29]
B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Ussr Comput. Math. Math. Phys., 4 (1964), 1-17
##[30]
Y. Shehu, Fixed Point Solutions of Generalized Equilibrium Problems for Nonexpansive Mappings, J. Comput. Appl. Math., 234 (2010), 892-898
##[31]
K. Sitthithakerngkiet, J. Deepho, J. Martınez-Moreno, P. Kumam, Convergence analysis of a general iterative algorithm for finding a common solution of split variational inclusion and optimization problems, Numer. Algorithms, 79 (2018), 801-824
##[32]
S. Takahashi, W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal., 69 (2008), 1025-1033
##[33]
C. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds, Kluwer Academic Publishers Group, Dordrecht (1994)
##[34]
H.-K. Xu, Iterative methods for split feasibility problem in infinite dimensional Hilbert spaces, Inverse Problems, 26 (2010), 1-17
##[35]
L. Yang, S.-S. Chang, Y. J. Cho, J. K. Kim, Multiple-set split feasibility problems for total asymp-totically strict pseudocontractions mappings, Fixed Point Theory Appl., 2011 (2011), 1-11
##[36]
J. Zhao, D. Hou, A self-adaptive iterative algorithm for the split common fixed point problems, Numer. Algorithms, 82 (2019), 1047-1063
]