]>
2015
8
4
ISSN 2008-1898
165
Quadruple fixed point theorems under (\(\varphi,\psi\))-contractive conditions in partially ordered \(G\)-metric spaces with mixed \(g\)-monotone property
Quadruple fixed point theorems under (\(\varphi,\psi\))-contractive conditions in partially ordered \(G\)-metric spaces with mixed \(g\)-monotone property
en
en
In this paper, we prove some quadruple coincidence and quadruple fixed point theorems for (\(\varphi,\psi\))-contractive
type mappings in partially ordered G-metric spaces with mixed g-monotone property. The results on fixed
point theorems are generalizations of some results obtained by Mustafa [Z. Mustafa, Fixed Point Theory
Appl., 2012 (2012), 22 pages]. We also give an example to support our results.
285
300
Jianhua
Chen
Department of Mathematics
Nanchang University
P. R. China
cjh19881129@163.com
Xianjiu
Huang
Department of Mathematics
Nanchang University
P. R. China
xjhuangxwen@163.com
partially ordered set
quadruple coincidence
quadruple fixed point
G-metric space
mixed g-monotone property.
Article.1.pdf
[
[1]
H. Aydi, B. Damjanović, B. Samet, W. Shatanawi , Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces, Math. Comput. Modelling, 54 (2010), 2443-2450
##[2]
V. Bernde , Coupled fixed point theorems for \(\phi\)-contractive mixed monotone mappings in partially ordered metric spaces, Nonliner Anal., 75 (2012), 3218-3228
##[3]
R. Chugh, T. Kadian, A. Rani, B. E. Rhoades, Property P in G-metric spaces , Fixed Point Theory Appl., 2010 (2012), 1-12
##[4]
E. Karapınar, P. Kumam, I. Merhan, Coupled fixed point theorems on partially ordered G-metric spaces, Fixed Point Theory Appl., 2012 (2012), 1-13
##[5]
E. Karapınar, N. V. Luong, Quadruple fixed point theorems for nonlinear contractions, Comput. Math. Appl., 64 (2012), 1839-1848
##[6]
E. Karapınar , Quartet fixed point for nonlinear contraction , http://arxiv.org/abs/1106.5472 , ()
##[7]
E. Karapınar, Quadruple fixed point theorems for weak \(\phi\)-contractions , ISRN Math. Anal., 2011 (2011), 1-15
##[8]
E. Karapınar, V. Berinde, Quadruple fixed point theorems for nonlinear contractions in partially ordered metric spaces, Banach J. Math. Anal., 6 (2012), 74-89
##[9]
E. Karapınar , A new quartet fixed point theorem for nonlinear contractions, JP J. Fixed Point Theory Appl., 6 (2011), 119-135
##[10]
E. Karapınar, W. Shatanawi, Z. Mustafa, Quadruple fixed point theorems under nonlinear contractive conditions in partially ordered metric spaces, J. Appl. Math., Article ID 951912, , (2012), 1-17
##[11]
N. V. Luong, N. X. Thuan, Coupled fixed point theorems in partially ordered G-metric spaces, Math. Comput. Modelling, 55 (2012), 1601-1609
##[12]
X. L. Liu, Quadruple fixed point theorems in partially ordered metric spaces with mixed g-monotone property, Fixed Point Theory Appl., 2013 (2013), 1-18
##[13]
Z. Mustafa, B. Sims, A new approach to generalized metric spaces , J. Nonlinear Convex Anal., 7 (2006), 289-297
##[14]
Z. Mustafa, W. Shatanawi, M. Bataineh , Existence of fixed point results in G-metric spaces, Int. J. Math. Math. Sci., 2009 (2009), 1-10
##[15]
Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl., 2009 (2009), 1-10
##[16]
Z. Mustafa, H. Aydi, E. Karapınar, Mixed g-monotone property and quadruple fixed point theorems in partially ordered metric space, Fixed Point Theory Appl., 2012 (2012), 1-19
##[17]
Z. Mustafa, H. Obiedat, F. Awawdeh , Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl., 2008 (2008), 1-12
##[18]
Z. Mustafa , Mixed g-monotone property and quadruple fixed point theorems in partiallly ordered G-metric spaces using ( \(\phi-\psi\) ) contractions , Fixed Point Theory Appl., 2012 (2012), 1-22
##[19]
H. K. Nashine, Coupled common fixed point results in ordered G-metric spaces, J. Nonlinear Sci. Appl., 5 (2012), 1-13
##[20]
W. Shatanawi , Fixed point theory for contractive mappings satisfying \(\Phi\)-maps in G-metric spaces , Fixed Point Theory Appl., 2010 (2010), 1-9
]
Common fixed point of four self maps on dislocated metric spaces
Common fixed point of four self maps on dislocated metric spaces
en
en
The purpose of this paper is to generalize and to unify common fixed theorems of Bennani et al. [S. Bennani,
H. Bourijal, S. Mhanna, D. El Moutawakil, J. Nonlinear Sci Appl., 8 (2015), 86-92] on dislocated metric
spaces.
301
308
Fei
He
School of Mathematical Sciences
Inner Mongolia University
China
hefei@imu.edu.cn
Coincidence point
common fixed point
dislocated metric spaces.
Article.2.pdf
[
[1]
I. Altun, G. Durmaz, Weak partial metric spaces and some fixed point results , Appl. Gen. Topol., 13 (2012), 179-191
##[2]
A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points , Fixed Point Theory Appl., 2012 (2012), 1-10
##[3]
H. Aydi, C. Vetro, W. Sintunavarat, P. Kumam , Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces, Fixed Point Theory Appl., 2012 (2012), 1-18
##[4]
S. Bennani, H. Bourijal, S. Mhanna, D. El Moutawakil, Some common fixed point theorems in dislocated metric spaces , J. Nonlinear Sci. Appl., 8 (2015), 86-92
##[5]
Lj. Ćirić, B. Samet, H. Aydi, C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., 218 (2011), 2398-2406
##[6]
G. Durmaz, O. Acar, I. Altun , Some fixed point results on weak partial metric spaces, Filomat, 27 (2013), 317-326
##[7]
P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000), 3-7
##[8]
S. G. Matthews , Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., 728 (1994), 183-197
##[9]
D. Panthi, K. Jha , A common fixed point of weakly compatible mappings in dislocated metric space, Kathmandu University J. Sci., Engineering and Technology, 8 (2012), 25-30
]
Fractional differential equations with integral boundary conditions
Fractional differential equations with integral boundary conditions
en
en
In this paper, the existence of solutions of fractional differential equations with integral boundary conditions
is investigated. The upper and lower solutions combined with monotone iterative technique is applied.
Problems of existence and unique solutions are discussed.
309
314
Xuhuan
Wang
Department of Education Science
Pingxiang University
China
wangxuhuan84@163.com
Liping
Wang
Department of Education Science
Pingxiang University
China
Qinghong
Zeng
Department of Mathematics
Baoshan University
China
Fractional differential equations
upper and lower solutions
monotone iterative
convergence
integral boundary conditions.
Article.3.pdf
[
[1]
R. P. Agarwal, S. Arshad, D. O'Regan, V. Lupulescu, Fuzzy fractional integral equations under compactness type condition , Fract. Calc. Appl. Anal., 15 (2012), 572-590
##[2]
M. Al-Refai, M. A. Hajji , Monotone iterative sequences for nonlinear boundary value problems of fractional order, Nonlinear Anal., 74 (2011), 3531-3539
##[3]
S. Arshad, V. Lupulescu, D. O'Regan, \(L^P\) -solutions for fractional integral equations, Fract. Calc. Appl. Anal., 17 (2014), 259-276
##[4]
T. Jankowski , Differential equations with integral boundary conditions, J. Comput. Appl. Math., 147 (2002), 1-8
##[5]
T. Jankowski, Fractional equations of Volterra type involving a Riemann-Liouville derivative, Appl. Math. Letter, 26 (2013), 344-350
##[6]
T. Jankowski, Boundary problems for fractional differential equations , Appl. Math. Letter, 28 (2014), 14-19
##[7]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo , Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, vol. 204, Elsevier, Amsterdam (2006)
##[8]
V. Lakshmikantham, A. S. Vatsala, Theory of fractional differential inequalities and applications, Commun. Appl. Anal., 11 (2007), 395-402
##[9]
V. Lakshmikanthan, A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Letter, 21 (2008), 828-834
##[10]
N. Li, C. Y. Wang, New existence results of positive solution for a class of nonlinear fractional differential equations, Acta. Math. Scientia, 33 (2013), 847-854
##[11]
J. T. Liang, Z. H. Liu, X. H. Wang, Solvability for a Couple System of Nonlinear Fractional Differential Equations in a Banach Space, Fract. Calc. Appl. Anal., 16 (2013), 51-63
##[12]
L. Lin, X. Liu, H. Fang, Method of upper and lower solutions for fractional differential equations, Electron. J. Differential Equations, 100 (2012), 1-13
##[13]
F. A. McRae, Monotone iterative technique and existence results for fractional differential equations , Nonlinear Anal., 71 (2009), 6093-6096
##[14]
A. Nanware, D. B. Dhaigude, Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions, J. Nonlinear Sci. Appl., 7 (2014), 246-254
##[15]
I. Podlubny , Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York (1999)
##[16]
A. Shi, S. Zhang , Upper and lower solutions method and a fractional differential equation boundary value problem, Electron. J. Qual. Theory Differ. Equ., 30 (2009), 1-13
##[17]
G. Wang, Monotone iterative technique for boundary value problems of a nonlinear fractional differential equations with deviating arguments , J. Comput. Appl. Math., 236 (2012), 2425-2430
##[18]
T. Wang, F. Xie, Existence and uniqueness of fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., 2 (2009), 206-212
##[19]
X. H. Wang , Impulsive boundary value problem for nonlinear differential equations of fractional order, Comput. Math. Appl., 62 (2011), 2383-2391
##[20]
Z. J. Yao , New results of positive solutions for second-order nonlinear three-point integral boundary value problems , J. Nonlinear Sci. Appl., 8 (2015), 93-98
##[21]
S. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., 71 (2009), 2087-2093
##[22]
S. Q. Zhang, X. W. Su , The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions inreverse order, Comput. Math. Appl., 62 (2011), 1269-1274
]
Inequalities for the generalized trigonometric and hyperbolic functions with two parameters
Inequalities for the generalized trigonometric and hyperbolic functions with two parameters
en
en
In this paper, we present some integral identities and inequalities of \((p; q)\)-complete elliptic integrals, and
prove some inequalities for the generalized trigonometric and hyperbolic functions with two parameters.
315
323
Li
Yin
Department of Mathematics
Binzhou University
China
yinli_79@163.com
Li-Guo
Huang
Department of Mathematics
Binzhou University
China
liguoh123@sina.com
complete elliptic integrals
inequality
generalized trigonometric function
generalized hyperbolic function
Fubini theorem.
Article.4.pdf
[
[1]
H. Alzer, Sharp inequalities for the complete elliptic integrals of the first kinds, Math. Proc. Camb. Phil. Soc., 124 (1988), 309-314
##[2]
G. D. Anderson, P. Duren, M. K. Vamanamurthy, An inequality for complete elliptic integrals, J. Math. Anal. Appl., 182 (1994), 257-259
##[3]
G. D. Anderson, S. L. Qiu, M. K. Vamanamurthy , Elliptic integrals inequalities, with applications , Constr. Approx., 14 (1998), 195-207
##[4]
G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Topics in special functions, arXiv:0712.3856v1[math.CA]. , ()
##[5]
B. A. Bhayo, M. Vuorinen, Inequalities for eigenfunctions of the p-Laplacian, Issues of Analysis, http://arxiv.org/abs/1101.3911 , 20:2 (2013), 1-19
##[6]
B. A. Bhayo, M. Vuorinen, On generalized trigonometric functions with two parameters, J. Approx. Theory, 164 (2012), 1415-1426
##[7]
S. Takeuchi, Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian, J. Math. Anal. Appl., 385 (2012), 24-35
##[8]
M. K. Wang, Y. M. Chu , Asymptotical bounds for complete elliptic integrals of second kind, arXiv:1209. 0066v1[math.CA]., ()
##[9]
L. Yin, L. G. Huang , Some properties related to generalized trigonometric and hyperbolic functions with two parameters, RGMIA Res. Rep. Coll., Art.143. http://rgmia.org/v17.php (2014)
]
A new kind of repairable system with repairman vacations
A new kind of repairable system with repairman vacations
en
en
In this paper, a new kind of series repairable system with repairman vacation is discussed, in which the
failure rate functions of all the units and the delayed vacation rate function of the repairman are related to
the working time of the system. The system model of a group of integro-differential equations is established
by using probability analysis method, which then is translated into an initial value problem of a class of
abstract semi-linear evolution equation in a suitable Banach space for further study. Then the conditions
of the existence and uniqueness of the system solution is analyzed by using \(C_0\)-semigroup theory. And by
using Laplace transform method, some steady-state reliability indexes, such as system availability, failure
frequency, and the probability that the repairman is on vacation, are discussed. Numerical examples are
also presented at the end of the paper.
324
333
Xiao
Zhang
Key Laboratory of Highway Construction and Maintenance Technology in Loess Region
Shanxi Transportation Research Institute
P. R. China
xiaozhang2008@gmail.com
Lina
Guo
Department of Mathematics
Taiyuan University of Technology
P. R. China
guolina982@163.com
Repairable system
delayed-multiple vacations
semi-linear evolution system
\(C_0\)-semigroup theory
well-posedness
stability
sensitivity analysis.
Article.5.pdf
[
[1]
J. H. Cao, K. Cheng , Introduction to reliability mathematics, Higher education press, Beijing (1986)
##[2]
L. N. Guo, H. B. Xu, C. Gao, G. T. Zhu, Stability analysis of a new kind n-unit series repairable system, Appl. Math. Model., 35 (2011), 202-217
##[3]
M. Jain, Rakhee, M. Singh , Bilevel control of degraded machining system with warm standbys, setup and vacation, Appl. Math. Model., 28 (2004), 1015-1026
##[4]
J. S. Jia, S. M. Wu , A replacement policy for a repairable system with its repairman having multiple vacations, Comput. Ind. Eng., 57 (2009), 156-160
##[5]
J. C. Ke, K. H. Wang, Vacation policies for machine repair problem with two type spares, Appl. Math. Model., 31 (2007), 880-894
##[6]
Y. X. Li , The positive solutions of abstract semilinear evolution equations and their applications, Acta Math. Sinica, 39 (1996), 666-672
##[7]
Y. X. Li , Existence and uniqueness of positive periodic solutions for abstract semilinear evolution equations, J. Syst. Sci. Math. Sci., 28 (2005), 720-728
##[8]
Y. X. Li , Existence of Solutions of Initial Value Problems for Abstract Semilinear Evolution Equations, Acta Math. Sinica, 48 (2005), 1089-1094
##[9]
R. B. Liu, Y. H. Tang, One-unit repairable system with multiple delay vacations, Chinese J. Eng. Math., 23 (2006), 721-724
##[10]
R. B. Liu, Y. H. Tang, Reliability analysis of a two-dissimilar-unit cold standby system with separated repair rule, J. Syst. Eng., 21 (2006), 628-635
##[11]
R. B. Liu, Y. H. Tang, C. Y. Luo, A new kind of N-unit series repairable system and its reliability analysis, Math. Appl., 20 (2007), 164-170
##[12]
A. Pazy, Semigroups of linear operators and applicaton to partial differential equations, Springer-Verlag, New York (1983)
##[13]
L. L. Wang, Studies of some aspects on abstract semilinear evolution solutions and functional differential equations , College of Mathematics and Econometrics, Hunan University (2001)
##[14]
Q. T. Wu, S. M. Wu , Reliability analysis of two-unit cold standby repairable systems under Poisson shocks, Appl. Math. Comput., 218 (2011), 171-182
##[15]
L. Yuan, J. Xu , A deteriorating system with its repairman having multiple vacations , Appl. Math. Comput., 217 (2011), 4980-4989
]
Fixed point theorems of multi-valued decreasing operators on cones
Fixed point theorems of multi-valued decreasing operators on cones
en
en
In this paper, some fixed point theorems for multi-valued decreasing operators are established on cones.
334
339
Yuqiang
Feng
School of Science
Wuhan University of Science and Technology
P. R. China
yqfeng6@126.com
Wei
Mao
School of Mathematical Science and Computer Science
Shaanxi University of Technology
P. R. China
Guangjun
Qu
School of Mathematical Science and Computer Science
Shaanxi University of Technology
P. R. China
Multi-valued decreasing operator
convex operator
cone
fixed point
Banach space.
Article.6.pdf
[
[1]
C. Bu, Y. Feng, H. Li, Existence and uniqueness of fixed point for mixed monotone ternary operators with application, Fixed Point Theory Appl., 2014 (2014), 1-13
##[2]
Y. Feng, S. Liu , Fixed point theorems for multi-valued increasing operators in partial ordered spaces , Soochow J. Math., 30 (2004), 461-469
##[3]
Y. Feng, P. Tong, Existence and nonexistence of positive periodic solutions to a second order differential inclusion, Topol. Methods Nonlinear Anal., 42 (2013), 449-459
##[4]
Y. Feng, H. Wang, Characterizations of reproducing cone and uniqueness of fixed point, Nonlinear Anal., 74 (2011), 5759-5765
##[5]
D. Guo , Partial Order Methods in Nonlinear Analysis, Shandong Science and Technology Press, Jinan (2000)
##[6]
N. Huang, Y. Fang, Fixed points for multi-valued mixed increasing operators in ordered Banach spaces with applications to integral inclusions, Z. Anal. Anwendungen, 22 (2003), 399-410
##[7]
N. B. Huy, N. H. Kahanh, Fixed point for multivalued increasing operators, J. Math. Anal. Appl., 250 (2000), 368-371
##[8]
N. S. Kukushikin, A fixed point theorem for decreasing mappings , Economic Lett., 46 (1994), 23-26
##[9]
M. A. Krasnoses'kii, P. P. Zabreiko , Geometrical Methods of Nonlinear Analysis , Springer Verlag, Berlin (1984)
##[10]
F. Li, J. Feng, P. Shen , Fixed point theorems for a class of decreasing operators and their applications, Acta Math. Sinica, (in Chinese)., 42 (1999), 193-196
]
Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations
Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations
en
en
This paper investigates the existence of positive solutions for a class of boundary value problems (BVP)
of fractional impulsive differential equations and presents a number of new results. First, by constructing
a novel transformation, the considered impulsive system is convert into a continuous system. Second,
using a specially constructed cone, the Krein-Rutman theorem, topological degree theory, and bifurcation
techniques, some sufficient conditions are obtained for the existence of positive solutions to the considered
BVP. Finally, an example is worked out to demonstrate the main result.
340
353
Yansheng
Liu
Department of Mathematics
Shandong Normal University
P. R. China
ysliu6668@163.com
Positive solutions
bifurcation techniques
fractional differential equations with impulse
boundary value problems.
Article.7.pdf
[
[1]
R. P. Agarwal, M. Benchohra, S. Hamani, A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions, Acta Appl. Math., 109 (2010), 973-1033
##[2]
B. Ahmada, S. Sivasundaram, Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Analysis: Hybrid Systems, 4 (2010), 134-141
##[3]
Z. Bai, H. Lv, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495-505
##[4]
M. Choisy, J. F. Guegan, P. Rohani, Dynamics of infectious diseases and pulse vaccination: Teasing apart the embedded resonance effects, Physica D., 22 (2006), 26-35
##[5]
K. Diethelm , The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type, LNM 2004, Springer (2010)
##[6]
A. d'Onofrio, On pulse vaccination strategy in the SIR epidemic model with vertical transmission, Appl. Math. Lett., 18 (2005), 729-32
##[7]
M. Fečkan, Y. Zhou, J. Wang , On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3050-3060
##[8]
S. Gao, L. Chen, J. J. Nieto, A. Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 24 (2006), 6037-6045
##[9]
D. Guo, Nonlinear Functional Analysis, Jinan: Shandong Science and Technology Press, in Chinese (2001)
##[10]
J. Jiang, L. Liu, Y. Wu, Positive solutions to singular fractional differential system with coupled boundary conditions, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 3061-3074
##[11]
D. Jiang, C. Yuan, The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application, Nonlinear Anal.-TMA, 72 (2010), 710-719
##[12]
A. A. Kilbas, J. J. Trujillo, Differential equations of fractional order: methods, results and problems I, Appl. Anal., 78 (2001), 153-192
##[13]
A. A. Kilbas, J. J. Trujillo, Differential equations of fractional order: methods, results and problems II, Appl. Anal., 81 (2002), 435-493
##[14]
V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore (1989)
##[15]
Y. Liu, D. O'Regan, Bifurcation techniques for Lidstone boundary value problems, Nonlinear Anal.-TMA, 68 (2008), 2801-2812
##[16]
Y. Liu, D. O'Regan, Multiplicity results using bifurcation techniques for a class of boundary value problems of impulsive differential equations, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1769-1775
##[17]
R. Ma, J. Xu, Bifurcation from interval and positive solutions of a nonlinear fourthorder boundary value problem, Nonlinear Anal.-TMA, 72 (2010), 113-122
##[18]
R. Ma, B. Yang, Z. Wang , Positive periodic solutions of first-order delay differential equations with impulses, Appl. Math. Comput., 219 (2013), 6074-6083
##[19]
I. Podlubny , Fractional Differential Equations , Mathematics in Science and Engineering, Academic Press, New York (1999)
##[20]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integral And Derivatives (Theory and Applications), Gordon and Breach, Switzerland (1993)
##[21]
K. Schmitt , Positive solutions of semilinear elliptic boundary value problem, Kluwer, Dordrecht, (1995), 447-500
##[22]
K. Schmitt, R. C. Thompson, Nonlinear Analysis and Differential Equations: An Introduction, University of Utah Lecture Note, Salt Lake City (2004)
##[23]
C, Tian, Y, Liu, Multiple positive solutions for a class of fractional singular boundary value problems, Mem. Differential Equations Math. Phys., 56 (2012), 115-131
##[24]
H. Wang, Existence results for fractional functional differential equations with impulses, J. Appl. Math. Comput., 38 (2012), 85-101
##[25]
X. Wang , Impulsive boundary value problem for nonlinear differential equations of fractional order, Computers & Math. Appl., 62 (2011), 2383-2391
##[26]
J. Xu, R. Ma, Bifurcation from interval and positive solutions for second order periodic boundary value problems, Appl. Math. Comput., 216 (2010), 2463-2471
##[27]
S. T. Zavalishchin, A. N. Sesekin, Dynamic Impulse Systems: Theory and Applications, Kluwer Academic Publishers Group, Dordrecht (1997)
]
Attractive points and convergence theorems of generalized hybrid mapping
Attractive points and convergence theorems of generalized hybrid mapping
en
en
In this paper, by means of the concept of attractive points of a nonlinear mapping, we prove strong convergence theorem of the Ishikawa iteration for an (\(\alpha,\beta\))-generalized hybrid mapping in a uniformly convex
Banach space, and obtain weak convergence theorem of the Ishikawa iteration for such a mapping in a
Hilbert space.
354
362
Yuchun
Zheng
School of Mathematics and Information Science
Henan Normal University
P. R. China
zhengyuchun1@yeah.net
Attractive points
generalized hybrid mapping
Ishikawa iteration
Mann iteration
Xu's inequality.
Article.8.pdf
[
[1]
J. B. Baillon, Un théoréme de type ergodique pour les contractions non linéars dans un espaces de Hilbert, C.R. Acad. Sci. Paris Ser. A-B, 280 (1975), 1511-1541
##[2]
R. E. Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math., 32 (1979), 107-116
##[3]
R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math., 38 (1981), 304-314
##[4]
M. Hojo, W. Takahashi , Weak and strong convergence theorems for generalized hybrid mappings in Hilbert spaces, Sci. Math. Jpn., 73 (2011), 31-40
##[5]
P. Kocourek, W. Takahashi, J. C. Yao , Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces , Taiwanese J. Math., 14 (2010), 2497-2511
##[6]
F. Kohsaka, W. Takahashi , Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. (Basel), 91 (2008), 166-177
##[7]
W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510
##[8]
W. V. Petryshyn, Construction of fixed points of demicompact mappings in Hilbert space, J. Math. Anal. Appl., 14 (1966), 276-284
##[9]
H. F. Senter, W. G. Dotson , Approximating fixed points of nonexpansive mappings , Proc. Amer. Math. Soc., 44 (1974), 375-380
##[10]
W. Takahashi , Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal., 11 (2010), 79-88
##[11]
W. Takahashi, J. C. Yao , Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, Taiwanese J. Math., 15 (2011), 457-472
##[12]
W. Takahashi, Y. Takeuchi , Nonlinear ergodic theorem without convexity for generalized hybrid mappings in a Hilbert space , J. Nonlinear Convex Anal., 12 (2011), 399-406
##[13]
H. K. Xu, Inequality in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127-1138
]
Various Suzuki type theorems in \(b\)-metric spaces
Various Suzuki type theorems in \(b\)-metric spaces
en
en
In this paper, we prove some fixed point results for \(\alpha\)-admissible mappings which satisfy Suzuki type contractive condition in the setup of b-metric spaces. Finally, examples are presented to verify the effectiveness
and applicability of our main results.
363
377
A.
Latif
Department of Mathematics
King Abdulaziz University
Saudi Arabia
alatif@kau.edu.sa
V.
Parvaneh
Department of Mathematics
Gilan-E-Gharb Branch, Islamic Azad University
Iran
vahid.parvaneh@kiau.ac.ir
P.
Salimi
Young Researchers and Elite Club
Rasht Branch, Islamic Azad University
Iran
salimipeyman@gmail.com
A. E.
Al-Mazrooei
Department of Mathematics
King Abdulaziz University
Saudi Arabia
aealmazrooei@kau.edu.sa
Ordered metric space
b-metric space
fixed point.
Article.9.pdf
[
[1]
A. Aghajani, M. Abbas, J. R. Roshan , Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64 (2014), 941-960
##[2]
V. Berinde, Generalized contractions in quasi-metric spaces, Seminar on Fixed Point Theory, Preprint, 3 (1993), 3-9
##[3]
V. Berinde, Sequences of operators and fixed points in quasi-metric spaces, Studia Universitatis Babes-Bolyai, Mathematica, 16 (1996), 23-27
##[4]
V. Berinde, Contracţii generalizate şi aplicaţii , Editura Club Press, Baia Mare (1997)
##[5]
F. Bojor, Fixed point theorems for Reich type contraction on metric spaces with a graph, Nonlinear Anal., 75 (2012), 3895-3901
##[6]
M. Boriceanu , Fixed point theory for multivalued generalized contractions on a set with two b-metrics, Studia Univ. ''Babes-Bolyai'', Mathematica, Vol. LIV, No. 3 (2009)
##[7]
M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Modern Math., 4 (2009), 285-301
##[8]
S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav., 1 (1993), 5-11
##[9]
S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263-276
##[10]
D. Dukić, Z. Kadelburg, S. Radenović, Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstr. Appl. Anal., 2011 (2011), 1-13
##[11]
M. Edelstein, On fixed and periodic points under contractive mappings , J. London Math. Soc., 37 (1962), 74-79
##[12]
M. Geraghty, On contractive mappings , Proc. Amer. Math. Soc., 40 (1973), 604-608
##[13]
N. Hussain, D. Đorić, Z. Kadelburg, S. Radenović, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., 2012 (2012), 1-12
##[14]
D. S. Jaggi , Some unique fixed point theorems , Indian J. Pure Appl. Math., 8 (1977), 223-230
##[15]
J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359-1373
##[16]
M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123-3129
##[17]
E. Karapınar, P. Kumam, P. Salimi, On \(\alpha-\psi\)-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013), 1-12
##[18]
H. K. Nashine, M. Imdad, M. Hasanc, Common fixed point theorems under rational contractions in complex valued metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 42-50
##[19]
J. J. Nieto, R. R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223-239
##[20]
M. Ozturk, M. Basarir, On some common fixed point theorems with rational expressions on cone metric spaces over a Banach algebra, Hacet. J. Math. Stat., 41 (2012), 211-222
##[21]
A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435-1443
##[22]
J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized \((\psi,\varphi )_s\)-contractive mappings in ordered b-metric spaces , Fixed Point Theory Appl., 2013 (2013), 1-23
##[23]
B. Samet, C. Vetro, P. Vetro, Fixed point theorem for \(\alpha-\psi\)-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165
##[24]
P. Salimi, E. Karapınar, Suzuki-Edelstein type contractions via auxiliary functions , Math. Probl. Eng., 2013 (2013), 1-8
##[25]
R. J. Shahkoohi, A. Razani , Some fixed point theorems for rational Geraghty contractive mappings in ordered b-metric spaces, J. Inequal. Appl., 2014 (2014), 1-23
##[26]
T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861-1869
##[27]
T. Suzuki , A new type of fixed point theorem in metric spaces, Nonlinear Anal.-TMA, 71 (2009), 5313-5317
##[28]
F. Zabihi, A. Razani , Fixed point theorems for Hybrid rational Geraghty contractive mappings in ordered b-metric spaces, J. Appl. Math., 2014 (2014), 1-9
]
On some new fixed point results in b-rectangular metric spaces
On some new fixed point results in b-rectangular metric spaces
en
en
In this paper we consider, discuss, improve and generalize recent fixed point results for mappings in
b-rectangular metric spaces. Thus, all our results are with much shorter proofs. Also, we prove Reich
type theorem in the frame of b-metric space. The proofs of all our results are without using Hausdorff
assumption. One example is given to support the result.
378
386
Hui-Sheng
Ding
College of Mathematics and Information Science
Jiangxi Normal University
China
dinghs@mail.ustc.edu.cn
Vildan
Ozturk
Department of Mathematics, Faculty of Science and Art
Artvin Coruh University, 08000
Turkey
vildan_ozturk@hotmail.com
Stojan
Radenović
Faculty of Mathematics and Information Technology, Teacher Education
Dong Thap University
Viet Nam
fixedpoint50@gmail.com;radens@beotel.rs;sradenovic@mas.bg.ac.rs
Fixed point
common fixed point
weakly compatible
b-metric space
rectangular metric space
b-rectangular metric space
Article.10.pdf
[
[1]
A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive appings in partially ordered b-metric spaces, Math. Slovaca, 4 (2014), 941-960
##[2]
A. Amini-Harandi , Fixed point theory for quasi-contraction maps in b-metric spaces, Fixed Point Theory, 15 (2014), 351-358
##[3]
I. A. Bakhtin, The contraction principle in quasimetric spaces , Funct. Anal., 30 (1989), 26-37
##[4]
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundam. Math., 3 (1922), 133-181
##[5]
A. Branciari , A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31-37
##[6]
S. Czerwik, Contraction mappings in b-metric spaces , Acta Math. Inform. Univ. Ostrav., 1 (1993), 5-11
##[7]
H. S. Ding, J. Vujaković, S. Radenović, On some fixed point results in b-metric, rectangular and b-rectangular metric spaces, preprint, ()
##[8]
D. Dukić, Z. Kadelburg, S. Radenović , Fixed point of Geraghty-type mappings in various generalized metric spaces, Abstract Appl. Anal., 2011 (2011), 1-13
##[9]
I. M. Erhan, E. Karapinar, T. Sekulić , Fixed points of (\(\psi,\phi\)) contractions on rectangular metric spaces, Fixed Point Theory Appl., 2012 (2012), 1-12
##[10]
R. George, S. Radenović, K. P. Reshma, S. Shukla, Rectangular b-metric spaces and contraction principle, preprint, (), -
##[11]
R. George, R. Rajagopalan , Common fixed point results for \(\psi-\phi\) contractions in rectangular metric spaces, Bull. Math. Anal. Appl., 5 (2013), 44-52
##[12]
M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604-608
##[13]
N. Hussain, D. Đorić, Z. Kadelburg, S. Radenović, Suzuki-type fixed point results in metric type spaces , Fixed Point Theory Appl., 2012 (2012), 1-12
##[14]
N. Hussain, V. Parvaneh, J. R. Roshan, Z. Kadelburg, Fixed points of cyclic weakly ( \(\psi,\phi , L, A,B\))-contractive mappings in ordered b-metric spaces with applications , Fixed Point Theory Appl., 2013 (2013), 1-18
##[15]
M. Jovanović, Z. Kadelburg, S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory Appl., 2010 (2010), 1-15
##[16]
M. S. Jovanović, Generalized contractive mappings on compact metric spaces, Third mathematical conference of the Republic of Srpska, Trebinje 7 and 8 June (2013)
##[17]
Z. Kadelburg, S. Radenović, Fixed point results in generalized metric spaces without Hausdorff property, Math. Sci., 2014 (2014), 1-8
##[18]
Z. Kadelburg, S. Radenović , On generalized metric spaces: a survey , TWMS J. Pure Appl. Math., 5 (2014), 3-13
##[19]
Z. Kadelburg, S. Radenović, S. Shukla, Boyd-Wong and Mei-Keeler type theorems in generalized metric spaces, preprint, (), -
##[20]
M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123-3129
##[21]
M. S. Khan, M. Swaleh, S. Sessa , Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1-9
##[22]
M. Kir, H. Kiziltunc, On Some Well Known Fixed Point Theorems in b-Metric Spaces , Turkish Journal of Analysis and Number Theory, 1 (2013), 13-16
##[23]
W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces , Springer, XI (2014), 1-173
##[24]
L. Milićević, Contractive families on compact spaces , Mathematika, 60 (2014), 444-462
##[25]
V. Parvaneh, J. R. Roshan, S. Radenović , Existence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations, Fixed Point Theory Appl. , 2013 (2013), 1-19
##[26]
S. Radenović, Z. Kadelburg, Quasi-contractions on symmetric and cone symmetric spaces, Banach J. Math. Anal., 5 (2011), 38-50
##[27]
S. Radenović, Z. Kadelburg, D. Jandrlić, A. Jandrlić, Some results on weakly contractive maps, Bull. Iran. Math. Soc., 38 (2012), 625-645
##[28]
J. R. Roshan, V. Parvaneh, N. Shobkolaei, S. Sedghi, W. Shatanawi , Common fixed points of almost generalized \(( \psi,\phi )_s\)-contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl., 2013 (2013), 1-23
##[29]
J. R. Roshan, V. Parvaneh, Z. Kadelburg, Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 229-245
##[30]
J. R. Roshan, N. Hussain, V. Parvaneh, Z. Kadelburg, New fixed point results in rectangular b-metric spaces, preprint, (), -
##[31]
M. P. Stanić, A. S. Cvetković, S. Simić, S. Dimitrijević, Common fixed point under contractive condition of Ćirić's type on cone metric type space, Fixed Point Theory Appl., 2012 (2012), 1-7
##[32]
D. Turkoglu, V. Ozturk , (\(\psi,\varphi\))-weak contraction on ordered uniform spaces, Filomat, 28 (2014), 1265-1269
]
New common fixed point theorem for a family of non-self mappings in cone metric spaces
New common fixed point theorem for a family of non-self mappings in cone metric spaces
en
en
In this paper, we prove a common fixed point theorem for a family of non-self mappings satisfying generalized
contraction condition of Ciric type in cone metric spaces (over the cone which is not necessarily normal).
Our result generalizes and extends all the recent results related to non-self mappings in the setting of cone
metric space.
387
401
Xianjiu
Huang
Department of Mathematics
Nanchang University
P. R. China
xjhuangxwen@163.com
Xinxin
Lu
Department of Mathematics
Nanchang University,, , .
P. R. China
ncuxxlu@163.com
Xi
Wen
Department of Computer Sciences
Nanchang University
P. R. China
ncuxwen@163.com
Cone metric spaces
Common fixed point
Non-self mappings
Contraction condition of Ciric type.
Article.11.pdf
[
[1]
M. Abbas, G. Jungck , Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341 (2008), 416-420
##[2]
M. Abbas, B. E. Rhoades, Fixed and periodic point results in cone metric spaces, Appl. Math. Letters, 22 (2009), 511-515
##[3]
N. A. Assad , On a fixed point theorem of Kannan in Banach spaces, Tamkang J. Math., 7 (1976), 91-94
##[4]
N. A. Assad, W. A. Kirk , Fixed point theorems for set valued mappings of contractive type, Pacific J. Math., 43 (1972), 553-562
##[5]
L. Ciric, Non-self mappings satisfying non-linear contractive condition with applications, Nonlinear Anal., 71 (2009), 2927-2935
##[6]
L. Ciric, J. Ume, Multi-valued non-self-mappings on convex metric spaces, Nonlinear Anal., 60 (2005), 1053-1063
##[7]
O. Hadzic , On coincidence points in convex metric spaces , Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 19 (1989), 233-240
##[8]
O. Hadzic, Lj. Gajic, Coincidence points for set-valued mappings in convex metric spaces, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 16 (1986), 13-25
##[9]
L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476
##[10]
X. J. Huang, J. Luo, C. X. Zhu, X. Wen , Common fixed point theorem for two pairs of non-self-mappings satisfying generalized Ciric type contraction condition in cone metric spaces, Fixed Point Theory Appl., 2014 (2014), 1-19
##[11]
D. Ilic, V. Rakocevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl., 341 (2008), 876-882
##[12]
M. Imdad, S. Kumar, Rhoades-type fixed-point theorems for a pair of nonself mappings, Comput. Math. Appl., 46 (2003), 919-927
##[13]
S. Itoh, Multivalued generalized contractions and fixed point theorems , Comment. Math. Univ. Carolinae, 18 (1977), 247-258
##[14]
G. Jungck, S. Radenovic, S. Radojevic, V. Rakocevic, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl., 2009 (2009), 1-13
##[15]
S. Jankovic, Z. Kadelburg, S. Radenovic, B. E. Rhoades, Assad-Kirk-Type fixed point theorems for a pair of nonself mappings on cone metric spaces, Fixed Point Theory Appl., 2009 (2009), 1-16
##[16]
M. S. Khan , Common fixed point theorems for multivalued mappings, Pacific J. Math., 95 (1981), 337-347
##[17]
S. Radenovic, B. E. Rhoades, Fixed point theorem for two non-self mappings in cone metric spaces, Comput. Math. Appl., 57 (2009), 1701-1707
##[18]
S. Reich, Some remarks concerning contraction mappings, Canadian Math. Bull., 14 (1971), 121-124
##[19]
Sh. Rezapour, A review on topological properties of cone metric spaces, Analysis, Topology and Applications 2008, Vrnjacka Banja, Serbia (2008)
##[20]
Sh. Rezapour, R. Hamlbarani, Some notes on the paper ''Cone metric spaces and fixed point theorems of contractive mappings'', J. Math. Anal. Appl., 345 (2008), 719-724
##[21]
B. E. Rhoades, A comparison of contractive definitions, Trans. Amer. Math. Soc., 226 (1977), 257-290
##[22]
B. E. Rhoades, A fixed point theorem for some non-self mappings, Math. Japonica. , 23 (1978), 457-459
##[23]
B. E. Rhoades, A fixed point theorem for non-self set-valued mappings, Internat. J. Math. Math. Sci., 20 (1977), 9-12
##[24]
R. Sumitra, V. Uthariaraj, R. Hemavathy, P. Vijayaraju , Common fixed point theorem for non-Self mappings satisfying generalized Ciric type contraction condition in cone metric space, Fixed Point Theory Appl., 2010 (2010), 1-17
##[25]
P. Vetro, Common fixed points in cone metric spaces, Rend. Circ. Mat. Palermo, 56 (2007), 464-468
##[26]
D. Wardowski , Endpoints and fixed points of set-valued contractions in cone metric space , Nonlinear Anal., 71 (2009), 512-516
##[27]
Yau-Chueng Wong, Kung-Fu Ng, Partially ordered topological vector spaces, Clarendon Press- Oxford, (1973)
]
Asymptotic aspect of Jensen and Jensen type functional equations in multi-normed spaces
Asymptotic aspect of Jensen and Jensen type functional equations in multi-normed spaces
en
en
In this paper, we investigate the Hyers-Ulam stability of additive functional equations of two forms: of
''Jensen'' and ''Jensen type'' in the framework of multi-normed spaces. We therefore provide a link between
multi-normed spaces and functional equations. More precisely, we establish the Hyers-Ulam stability of
functional equations of these types for mappings from Abelian groups into multi-normed spaces. We also
prove the stability on a restricted domain and discuss an asymptotic behavior of functional equations of
these types in the framework of multi-normed spaces.
402
411
Zhihua
Wang
School of Science
Hubei University of Technology
P. R. China
matwzh2000@126.com
Hyers-Ulam stability
Jensen and Jensen type functional equations
Multi-normed spaces
Asymptotic behavior.
Article.12.pdf
[
[1]
J. Aczél , A short course on functional equations, D. Reidel Publ. Co., Dordrecht (1987)
##[2]
R. P. Agarwal, B. Xu, W. Zhang, Stability of functional equations in single variable, J. Math. Anal. Appl., 288 (2003), 852-869
##[3]
M. Amyari, M. S. Moslehian, Approximately ternary semigroup homomorphisms, Lett. Math. Phys., 77 (2006), 1-9
##[4]
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66
##[5]
J. Brzdȩk, K. Ciepliński , Remarks on the Hyers-Ulam stability of some systems of functional equations, Appl. Math. Comput., 219 (2012), 4096-4105
##[6]
J. Brzdȩk, K. Ciepliński , A fixed point theorem and the Hyers-Ulam stability in non-Archimedean spaces, J. Math. Anal. Appl., 400 (2013), 68-75
##[7]
H. G. Dales, M. S. Moslehian, Stability of mappings on multi-normed spaces, Glasg. Math. J., 49 (2007), 321-332
##[8]
H. G. Dales, M. E. Polyakov , Multi-normed spaces, Dissertationes Math. (Rozprawy Mat.), 488 (2012), 1-165
##[9]
G. L. Forti , Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50 (1995), 143-190
##[10]
P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings , J. Math. Anal. Appl., 184 (1994), 431-436
##[11]
D. H. Hyers , On the stability of the linear functional equation , Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224
##[12]
D. H. Hyers, G. Isac, Th. M. Rassias , Stability of Functional Equations in Several Variables, Birkhäuser, Basel (1998)
##[13]
S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Science, New York (2011)
##[14]
Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Science, New York (2009)
##[15]
M. S. Moslehian, Approximately vanishing of topological cohomology groups, J. Math. Anal. Appl., 318 (2006), 758-771
##[16]
M. S. Moslehian , Superstability of higher derivatios in multi-Banach algebras , Tamsui Oxford J. Math. Sci., 24 (2008), 417-427
##[17]
M. S. Moslehian, K. Nikodem, D. Popa, Asymptotic aspect of the quadratic functional equation in multi-normed spaces, J. Math. Anal. Appl., 355 (2009), 717-724
##[18]
A. Najati, C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the pexiderized Cauchy functional equation, J. Math. Anal. Appl., 335 (2007), 763-778
##[19]
A. Najati, M. B. Moghimi , Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399-415
##[20]
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300
##[21]
J. M. Rassias, M. J. Rassias, On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl., 281 (2003), 516-524
##[22]
S. M. Ulam , Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York (1964)
##[23]
T. Xu, J. M. Rassias, W. Xu , Intuitionistic fuzzy stability of a general mixed additive-cubic equation, J. Math. Phys., 51 (2010), 1-21
]
Fixed point theorems for two new types of cyclic weakly contractive mappings in partially ordered Menger PM-spaces
Fixed point theorems for two new types of cyclic weakly contractive mappings in partially ordered Menger PM-spaces
en
en
In this paper, we introduce the concepts of cyclic weakly (\(\psi,\phi\))-contractive mappings and cyclic weakly
(\(C,\psi,\varphi\))-contractive mappings, and prove some fixed point theorems for such two types of mappings in
complete partially ordered Menger PM-spaces. Some new results are obtained, which extend and generalize
some fixed point results in metric and probabilistic metric spaces. Some examples are given to support our
results.
412
422
Wenqing
Xu
Department of Mathematics
Nanchang University
China
wen_qing_xu@163.com
Chuanxi
Zhu
Department of Mathematics
Nanchang University
China
chuanxizhu@126.com
Zhaoqi
Wu
Department of Mathematics
Nanchang University
China
wuzhaoqi_conquer@163.com
Li
Zhu
Department of Mathematics
Nanchang University
China
zflcz@163.com
Menger PM-space
partially ordered
cyclic weakly contractive
fixed point.
Article.13.pdf
[
[1]
S. M. Alsulami , Unique coincidence and fixed point theorem for g-weakly C-contractive mappings in partial metric spaces, Abstr. Appl. Anal., 2014 (2014), 1-6
##[2]
A. Amini-Harandi, H. Emami, A fixed point theorems for contraction type in partilly ordered metric spaces, and application to ordinary differential equations , Nonlinear Anal., 72 (2010), 2238-2242
##[3]
T. G. Bhaskar, V. Lakshimikantham, Fixed point theorems in partilly ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1376-1393
##[4]
S. S. Chang, Y. J. Cho, S. M. Kang , Nonlinear operator theory in probabilistic metric spaces, Nova Science Publishers, Inc., Huntington, NY (2001)
##[5]
B. S. Choudhury, A. Kundu , ( \(\psi,\alpha,\beta\))-weak contractions in partially ordered metric spaces, Appl. Math. Lett., 25 (2012), 6-10
##[6]
L. Ćirić, R. P. Agarwal, B. Samet , Mixed monotone generalized contractions in partially ordered probabilistic metric spaces, Fixed Point Theroy Appl., 2011 (2011), 1-13
##[7]
J. Harjani, B. Lopez, K. Sadarangani , Fixed point theorems for weakly C-contractive mappings in ordered metric spaces , Comput. Math. Appl., 61 (2011), 790-796
##[8]
J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal., 71 (2009), 3403-3410
##[9]
X. Q. Hu, X. Y. Ma, Coupled coincidence point theorems under contractive conditions in partially ordered probabilistic metric spaces, Nonlinear Anal., 74 (2011), 6451-6458
##[10]
M. S. Kan, M. Swaleh, S. Sessa , Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 31 (1984), 1-9
##[11]
E. Karapinar, Fixed point theory for cyclic weak \(\phi\)-contraction, Appl. Math. Lett., 24 (2011), 822-825
##[12]
E. Karapinar, I. S. Yuce, Fixed point theory for cyclic generalized weak \(\phi\)-contraction on partial metric spaces, Abstr. Appl. Anal., 2012 (2012), 1-12
##[13]
W. A. Kirk, P. S. Srinavasan, P. Veeramani , Fixed points for mappings satisfying cyclical contractive conditions , Fixed Point Theory., 4 (2003), 79-89
##[14]
K. Menger, Statistical metric, Proc. Natl. Acad. Sci, USA., 28 (1942), 535-537
##[15]
H. K. Nashine, Cyclic generalized \(\psi\)-weakly contractive mappings and fixed point results with applications to integral equations, Nonlinear Anal., 75 (2012), 6160-6169
##[16]
H. K Nashine, C. Vetro, Monotone generalized nonlinear contraction and fixed point theorems in ordered metric spaces, Math. Comput. Model., 54 (2011), 712-720
##[17]
W. Shatanawi , Fixed point theorems for nonlinear weakly C-contractive mappings in metric spaces, Math. Comput. Model., 54 (2011), 2816-2826
##[18]
B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland, Amsterdam (1983)
##[19]
W. Sintunavarat, P. Kumam, Fixed point theorems for a generalized almost (\(\phi,\varphi\))-contraction with respect to S in ordered metric spaces, J. Inequal. Appl., 2012 (2012), 1-11
##[20]
C. X. Zhu, Several nonlinear operator problems in the Menger PN space, Nonlinear Anal., 65 (2006), 1281-1284
##[21]
C. X. Zhu, Research on some problems for nonlinear operators, Nonlinear Anal., 71 (2009), 4568-4571
##[22]
C. X. Zhu, J. D. Yin, Calculations of a random fixed point index of a random sem-cloosed 1-set-contractive operator, Math. Comput. Model., 51 (2010), 1135-1139
]
Some new results for power means
Some new results for power means
en
en
In this paper, we establish some new inequalities for power means with n positive numbers. Moreover, some
new properties of \(p \mapsto M_n(a; p)\) are obtained, where \(M_n(a; p)\) denotes the p-th power mean of first n entry
of vector a.
423
433
Yu-Qin
Xu
School of Electrical and Electronic Engineering
North China Electric Power University
P. R. China
xuyuqin_ncepu@126.com
Kun
Chen
School of Electrical and Electronic Engineering
North China Electric Power University
P. R. China
chenk_ncepu@163.com
Jing-Feng
Tian
College of Science and Technology
North China Electric Power University
P. R. China
tianjfhxm_ncepu@163.com
Mapping
power mean
ratio.
Article.14.pdf
[
[1]
P. S. Bullen, Mitrinović, P. M. Vasić, Means and Their Inequalities, Kluwer, (2003)
##[2]
Y. M. Chu, W. F. Xia, Two sharp inequalities for power mean, geometric mean, and harmonic mean, J. Inequal. Appl., 2009 (2009), 1-6
##[3]
I. I. Costin, G. H. Toader , Optimal evaluations of some Seiffert-type means by power means , Appl. Math. Comput., 219 (2013), 4745-4754
##[4]
A. Čižmešija, A new sharp double inequality for generalized heronian, harmonic and power means , Comput. Math. Appl., 64 (2012), 664-671
##[5]
A. Čižmešija, The optimal power mean bounds for two convex combinations of A-G-H means, J. Math. Inequal., 6 (2012), 33-41
##[6]
H. Y. Gao, J. L. Guo, W. G. Yu, Sharp bounds for power mean in terms of generalized heronian mean, Abstr. Appl. Anal., 2011 (2011), 1-9
##[7]
G. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, UK (1952)
##[8]
O. Hölder, Üeber einen Mittelwerthabsatz, Göttinger. Nachr, (1889), 38-47
##[9]
A. Ibrahim, S. S. Dragomir, M. Darus, Power series inequalities via Young's inequality with applications, J. Inequal. Appl., 2013 (2013), 1-13
##[10]
O. Kouba, Bounds for the ratios of differences of power means in two arguments , Math. Inequal. Appl., 17 (2014), 913-928
##[11]
B. Y. Long, Y. M. Chu , Optimal power mean bounds for the weighted geometric mean of classical means, J. Inequal Appl., 2010 (2010), 1-6
##[12]
V. Mascioni, A note on stolarsky, arithmetic and logarithmic means, Math. Inequal. Appl., 15 (2012), 581-590
##[13]
H. Minkowski, Geometrie der Zahlen, Teubner-Verlag, Leipzig (1896)
##[14]
J. J. Wen, W. L. Wang, The optimization for the inequalities of power means, J. Inequal. Appl., 2006 (2006), 1-25
##[15]
S. H. Wu, Generalization and sharpness of the power means inequality and their applications, J. Math. Anal. Appl., 312 (2005), 637-652
##[16]
W. F. Xia, W. Janous, Y. M. Chu, The optimal convex combination bounds of arithmetic and harmonic means in terms of power mean, J. Math. Inequal., 6 (2012), 241-248
##[17]
Z. H. Yang, Sharp bounds for Seiffert mean in terms of weighted power means of arithmetic mean and geometric mean, Math. Inequal. Appl., 17 (2014), 499-511
]
A method of differential and sensitivity properties for weak vector variational inequalities
A method of differential and sensitivity properties for weak vector variational inequalities
en
en
In this paper, by virtue of a contingent derivative and a \(\Phi\)-contingent cone, we investigate differential
properties of a class of set-valued maps in a more general setting utilizing Hadamard directional differentials.
Then, by means of a gap function, sensitivity properties are discussed for a weak vector variational inequality.
We also show that our results extend some existing results in the literature.
434
441
Xiang-Kai
Sun
College of Automation
Chongqing University
China
sxkcqu@163.com
Yi
Chai
College of Automation
Chongqing University
China
chaiyi@cqu.edu.cn
Xiao-Le
Guo
School of Economics
Southwest University of Political Science and Law
China
xlguocqu@163.com
Jing
Zeng
College of Mathematics and Statistics
Chongqing Technology and Business University
China
yiyuexue219@163.com
Contingent derivative
Gap function
Weak vector variational inequality
Article.15.pdf
[
[1]
J. P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhauser, Boston (1990)
##[2]
J. F. Bonnans, A. Shapiro , Perturbation Analysis of Optimization Problem, Springer-Verlag, New York (2000)
##[3]
J. W. Chen, Z.Wan, Y. J. Cho, Nonsmooth multiobjective optimization problems and weak vector quasi-variational inequalities, Comput. Appl. Math., 32 (2013), 291-301
##[4]
J. W. Chen, Z. Wan , Semicontinuity for parametric Minty vector quasivariational inequalities in Hausdorff topological vector spaces, Comput. Appl. Math., 33 (2014), 111-129
##[5]
G. Y. Chen, Existence of solutions for a vector variational inequality: an extension of the Hartmann-Stampacchia theorem, J. Optim. Theory Appl., 74 (1992), 445-456
##[6]
G. Y. Chen, C. J. Goh, X. Q. Yang, On gap functions for vector variational inequalities, In: Giannessi, F. (ed.) Vector Variational Inequality and Vector Equilibria: Mathematical Theories. Kluwer, Boston, (2000), 55-70
##[7]
G. Y. Chen, S. J. Li , Existence of solutions for a generalized vector quasivariational inequality, J. Optim. Theory Appl., 90 (1996), 321-334
##[8]
F. Giannessi , Theorems of the alternative, quadratic programs and complementarity problems, In: Cottle, R.W., Giannessi, F., Lions, J.L.(eds.) Variational Inequalities and Comple-mentarity Problems, Wiley, New York, (1980), 151-186
##[9]
F. Giannessi, , Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, Kluwer Academic Publishers, Dordrecht, Holland (2000)
##[10]
S. J. Li, G. Y. Chen, K. L. Teo, On the stability of generalized vector quasivariational inequality problems, J. Optim. Theory Appl., 113 (2002), 283-295
##[11]
S. J. Li, H. Yan, G. Y. Chen , Differential and sensitivity properties of gap functions for vector variational inequalities, Math. Methods Oper. Res., 57 (2003), 377-391
##[12]
S. J. Li, J. Zhai, Second-order asymptotic differential properties and optimality conditions for weak vector variational inequalities, Optim. Lett., 6 (2012), 503-523
##[13]
M. H. Li, S. J. Li, Second-order differential and sensitivity properties of weak vector variational inequalities, J. Optim. Theory Appl., 144 (2010), 76-87
##[14]
K. W. Meng, S. J. Li , Differential and sensitivity properties of gap functions for Minty vector variational inequalities, J. Math. Anal. Appl., 337 (2008), 386-398
##[15]
H. Mirzaee, M. Soleimani-Damaneh, Derivatives of Set-Valued Maps and Gap Functions for Vector Equilibrium Problems, Set-Valued Var. Anal., 22 (2014), 673-689
##[16]
S. K. Zhu, S. J. Li, K. L. Teo, Differential properties and optimality conditions for generalized weak vector variational inequalities, Positivity, 17 (2013), 443-457
##[17]
X. Q. Yang, J. C. Yao, Gap functions and existence of solutions to set-valued vector variational inequalities, J. Optim. Theory Appl., 115 (2002), 407-417
]
Positive solutions for a class of \(q\)-fractional boundary value problems with \(p\)-Laplacian
Positive solutions for a class of \(q\)-fractional boundary value problems with \(p\)-Laplacian
en
en
By meaning of the upper and lower solutions method, we study the existence of positive solutions for a class
of \(q\)-fractional boundary value problems with \(p\)-Laplacian.
442
450
Jidong
Zhao
Department of Foundation
Shandong Yingcai University
China
zhaojidong0914@163.com
\(q\)-fractional boundary value problem
\(p\)-Laplacian
positive solution
upper and lower solutions method.
Article.16.pdf
[
[1]
R. P. Agarwal , Certain fractional q-integrals and q-derivatives, Proc. Cambridge Philos. Soc., 66 (1969), 365-370
##[2]
R. Almeida, N. Martins, Existence results for fractional q-difference equations of order \(\alpha\in]2; 3[ \)with three-point boundary conditions, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 1675-1685
##[3]
R. Ferreira, Nontrivial solutions for fractional q-difference boundary-value problems, Electron, J. Qual. Theory Differ. Equ., 70 (2010), 1-10
##[4]
J. Graef, L. Kong, Positive solutions for a class of higher order boundary value problems with fractional q- derivatives, Appl. Math. Comput., 218 (2012), 9682-9689
##[5]
M. Jia, X. Liu, Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions, Appl. Math. Comput., 232 (2014), 313-323
##[6]
V. Kac, P. Cheung, Quantum Calculus, Springer, New York (2002)
##[7]
S. Liang, J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal., 71 (2009), 5545-5550
##[8]
F. Miao, S. Liang, Uniqueness of positive solutions for fractional q-difference boundary-value problems with p- Laplacian operator, Electron. J. Diff. Equ., 174 (2013), 1-11
##[9]
P. Rajković, S. Marinković, M. Stanković , Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math., 1 (2007), 311-323
##[10]
W. Xie, J. Xiao, Z. Luo, Existence of extremal solutions for nonlinear fractional differential equation with nonlinear boundary conditions, Appl. Math. Lett., 41 (2015), 46-51
##[11]
Q. Yuan, W. Yang, Positive solution for q-fractional four-point boundary value problems with p-Laplacian operator, J. Inequal. Appl., 2014 (2014), 1-14
##[12]
Y. Zhao, S. Sun, Z. Han, Q. Li, The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 2086-2097
##[13]
X. Zhang, L. Liu, Y. Wu, The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium, Appl. Math. Lett., 37 (2014), 26-33
]