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Abstract

In this study, we introduce a new mathematical model with a vaccination strategy in which different levels of susceptibility
of individuals to an epidemic are considered. This model, which also takes into account the latent period, consists of a delay
differential equation system. After showing the uniqueness of solution of the system, we present the equilibrium points of the
model and the reproduction number R0 which is a vital threshold in spread of diseases. Then by using Lyapunov function
and LaSalle Invariance Principle [21], we give some results about the global stabilities of the equilibrium points ofthe model
according to R0.
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1. Introduction

Mathematics, as a basic science, is constantly developing to define and analyze problems in many
fields within a discipline. In this context, nonlinear integral, differential and integro-differential equations
are among the most effective tools used, [1–6].

On the other hand, mathematical modelling has an important role to take stock of problems and
phenomenons in some areas. Medicine, biology and epidemiology are at the top of these areas, [8, 11, 15,
17]. Especially if it is needed to focus on epidemiology, we can unfortunately say that many infectious
diseases have deeply affected to all creatures. Millions of people died of various infectious diseases so
far in history. Influenza A (H1N1), which spread in more than 200 countries starting in the USA in 2009,
caused at least 12469 deaths, [31]. After three years, MERS respiratory syndrome which is a viral disease,
erupted in Saudi Arabia and resulted in that approximately %35 of the patients have died. Then, a new
disease known as Ebola Virus Disease (EVD) was included in the literature by reporting a case believed
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to be infected by bats in West Africa in 2014. EVD, which continued its effect until 2016, resulted in death
in about half of the 28616 people it was infected, [32].

In 2020, unfortunately, Covid-19 (Sars-Cov2), which turned into a pandemic, caused nearly 2 million
deaths in the same year and still continues to spread rapidly around the world.

Applications of mathematical modeling in epidemiology have been started regularly in 1927 by Ker-
mack and McKendrick [16] who pioneered understanding of spread and control of infectious diseases,
and continue increasingly. They have used a system of ODE to describe spreading of infectious diseases
in a population. In this system, known as the SIR epidemic model in literature, the population consists
of non-intersecting three compartments. These compartments are as follows; susceptibles (S), infectious
(I) and removed or recovered individuals (R). Then many authors studied mathematical epidemiology,
[7, 9, 10, 14, 22–25].

Also, different compartmental epidemic models in which the latent period is also taken into account
have been introduced by some authors, and many results about these epidemic models have been ob-
tained, [13, 18, 26, 30].

The studies on stability analysis of all these models depend on the threshold R0 which is defined as the
number of secondary cases generated by an infected individual in a population. In general, if R0 < 1 then
invasion of individuals by the pathogen will not give rise to large outbreaks, and the disease gradually
becomes extinct. Otherwise the disease continues to spread in the population. Routh-Hurwitz Criteria
[28] and LaSalle’s Invariance Principle [21] associated with Lyapunov functionals are commonly used to
analyze stability of epidemic models.

On the other hand, especially in epidemics such as Covid-19 with high spreading rate and severe
negative consequences, it is extremely important to have a successful vaccine. Moreover, the benefit from
vaccination is directly related to an effective vaccination strategy.

Health conditions like lung or heart disease, diabetes or conditions that negatively affect the immune
system are described as high risk factors to catching the epidemic diseases, [33]. It is defined the individ-
uals in this context as high risk susceptible individuals in this paper.

In this study, a mathematical model, based on vaccination taking into account the division of suscep-
tible individuals into two subclasses such as ”high risk susceptibles” and ”other susceptibles” has been
created, and the effect of this strategy on the course of the epidemic is analyzed. Then global stabilities
of the equilibrias of the model are studied. Finally a simulation of the course of disease according to the
different vaccination rates in the population is presented.

Unlike the classical models, in the model presented in this paper, the effect of different susceptibility
levels on the total protection rate of the population with vaccination is considered. Also, one of the
original contributions of the model presented is that the protection provided by vaccination is taken into
account in inverse proportion to the contagiousness rates for individuals with different susceptibility
levels.

2. Description of the Model

We formulate an SVEIR epidemic model such that S, V , E, I and R represent the susceptible, vacci-
nated, exposed to the pathogen, infectious and removed classes, respectively. In the model, we firstly
assume that the susceptible individuals consist of two separate subgroups: ”high risk susceptibles” and
”other susceptible individuals”. Also, all new members of the population join to S with a fixed rate b in
addition that d represents the natural death rate of all compartments.

On the other hand, β1 and β2 are the transmission rate from ”high risk susceptibles” and ”other
susceptibles” to E, respectively such that 0 < β2 ⩽ β1 ⩽ 1. We should immediately note that the β1/β2
value also represents the disadvantage of high risk susceptibles in terms of catching the disease compared
to other susceptible individuals. Moreover, this is not only a disadvantage for high risk individuals, but
also a disadvantage for the entire population as it can ease the spread of the epidemic.
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We also assume that the compartment S consists of high risk susceptibles at rate k in addition that
ε1and ε2 are the vaccination rates of high risk susceptibles and other susceptibles, respectively. Consider-
ing the fact that high risk susceptibles may be more likely to become infectious when they encounter the
pathogen [27], it can be said that vaccination of these individuals will have a greater effect on reducing
the spread of the epidemic than other susceptible individuals. The model essentially depends on this
reality and we reflect this fact to the model via again β1/β2 coefficient, which is greater than or equal
to 1. That is, the disadvantage of high risk individuals in terms of catching the disease compared to
other susceptible individuals turns into an advantage in repression of the spreading via vaccination. This
advantage is represented by β1/β2 coefficient, parallel to the situation in spreading.

Although one individual is vaccinated, he may be infected. So we assume β3 is the transmission rate
from V to E. Also γ and α show the recovery rates of infectious and vaccinated individuals, respectively.
Finally, µ denotes the death rate due to the infection in the compartment I.

So, we present the model as follow

dS

dt
= b− [kβ1 + (1 − k)β2]S (t) I (t) − (k

β1

β2
ε1 + (1 − k)ε2 + d)S (t) ,

dV

dt
= (k

β1

β2
ε1 + (1 − k)ε2)S (t) −β3V (t) I (t) − (d+α)V (t) ,

dE

dt
= [kβ1 + (1 − k)β2] S (t) I (t) +β3V (t) I (t) − Ẽ (t, τ) − dE (t) , (2.1)

dI

dt
= Ẽ (t, τ) − (d+ µ+ γ) I (t) ,

dR

dt
= γI (t) +αV (t) − dR (t) ,

where S(t),V(t), Ẽ (t, τ) , I(t) and R(t) denote the size of the subclasses: susceptibles, vaccinated, exposed
to the pathogen with exposure age τ, infectious and recovered individuals at time t, respectively. Natu-
rally, these functions and all parameters are nonnegative.

We write Ẽ (t, τ) to denote the size of exposed individuals who entered in the latent period with
exposure age τ (i.e, time elapsed since exposure to the pathogen) at time t.

So, defining the latent period as s, we can say that the number of individuals who completed their
latent period at time t is Ẽ (t, τ). Also, taking into account that the natural death rate d the following
description is meaningful,

Ẽ (t, τ) = {[kβ1 + (1 − k)β2]S(t− τ) +β3V(t− τ)} I(t− τ)e−dτ.

Indeed this result is obtained by the solution of following Cauchy problem(
∂

∂t
+

∂

∂τ

)
Ẽ (t, τ) = −dẼ (t, τ) ,

Ẽ (t, 0) = [kβ1 + (1 − k)β2]S (t) I (t) +β3V (t) I (t) .

Also N(t) shows the total size of the population at time t such that S(t) + V(t) + E(t) + I(t) + R(t) =
N(t) for all t ⩾ 0. We should note that, since the functions E and R does not appear in the equations
for dS/dt, dV/dt and dI/dt, it is enough to examine the behaviour of the system consisting of equations
in (2.1) without dE/dt and dR/dt. Taking into account that exposed and recovered individuals don’t
effect directly to transmission of the disease, we also should note that this assumption is meaningful as
epidemiologically and mathematically.

So we can rewrite the model as follow
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dS
dt

= b− [kβ1 + (1 − k)β2]S (t) I (t) − (kβ1
β2

ε1 + (1 − k)ε2 + d)S (t) ,

dV
dt

= (kβ1
β2

ε1 + (1 − k)ε2)S (t) −β3V (t) I (t) − (d+α)V (t) ,

dI
dt

= [kβ1 + (1 − k)β2]S(t− τ)I(t− τ)e−dτ

+β3V(t− τ)I(t− τ)e−dτ − (d+ µ+ γ) I (t) ,

t ∈ [0,∞)

S (t) = g1 (t) ,

V (t) = g2 (t) ,

I (t) = g3 (t) ,

t ∈ [−τ, 0]

(2.2)

where g ∈ C
(
[−τ, 0] ,

[
0, b

d

]3
)

.
If we choose x = (S,V , I) and g = (g1,g2,g3) then finding the solution of (2.2) is equvalent to solving

the following equation

x′ (t) = f
(
xt
)

, t ⩾ 0 (2.3)
x0 (t) = g (t) , − τ ⩽ t ⩽ 0

here f : Ω →
[
0, b

d

]3
. xs (θ) = x (s+ θ) and x ∈ C

(
[−τ,∞) ,

[
0, b

d

]3
)

such that Ω ⊂ C
(
[−τ, 0] ,

[
0, b

d

]3
)

.
Also f is described as

f1 (x) = b− [kβ1 + (1 − k)β2]S (0) I (0) − (k
β1

β2
ε1 + (1 − k)ε2 + d)S (0) ,

f2 (x) = (k
β1

β2
ε1 + (1 − k)ε2)S (0) −β3V (0) I (0) − (d+α)V (0) ,

f3 (x) = [kβ1 + (1 − k)β2]S(−τ)I(−τ)e−dτ +β3V(−τ)I(−τ)e−dτ

−(d+ µ+ γ) I (0)

with initial function S(t) = g1(t), V(t) = g2(t) and I (t) = g3 (t) for −τ ⩽ t ⩽ 0.
As known C

(
[−τ, 0] , R3

)
is a Banach space of continuous functions, and ∥·∥C denotes the norm on

C ([−τ, 0] , Rn) and is defined by

∥ζ∥C = sup {|ζ1 (t)|+ |ζ2 (t)|+ |ζ3 (t)| : −τ ⩽ t ⩽ 0} .

On the other hand we can say that the equation (2.3) has a unique solution if f is Lipschitz continuous
in every compact subset M ⊂ Ω. Indeed this result depends on Schauder fixed point theorem [19].

2.1. Feasible region for the model and uniqueness of the solution

Let us recall that the definition of invariant and positively invariant set and determine positively
invariant region for the model.

A set Γ is invariant with respect to
dN

dt
= g(N)

if N(0) ∈ Γ requires N(t) ∈ Γ for all t ∈ R. Especially if N(0) ∈ Γ requires N(t) ∈ Γ for t ∈ [0,∞) then it is
said that Γ is positively invariant.
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Lemma 2.1. The set

Ω =

{
(S,V , I) ∈ C

(
[−τ, 0] , R3

+

)
: S(t) ⩽ b

kβ1
β2

ε1 + (1 − k)ε2 + d
,

V(t) ⩽
b(kβ1

β2
ε1 + (1 − k)ε2)(

kβ1
β2

ε1 + (1 − k)ε2 + d
)
(d+α)

and S(t) + V(t) + I(t) ⩽ b

d


is positively invariant for the model (2.2).

Proof. We can write
dN

dt
+ dN(t) = b− µI ⩽ b (2.4)

from using (2.2). If we focus on the solution of

dN

dt
+ dN(t) = b,

we have
d

dt

(
N(t)edt

)
= bedt.

Taking into account

N(t) =
b

d
+ ce−dt,

for t = 0, we obtain

c = N(0) −
b

d
.

Thus we have
N(t) = N(0)e−dt +

b

d

(
1 − e−dt

)
. (2.5)

By the Standard Comparison Theorem [20], the maximal solution of equation (2.4) gets as (2.5). Hence

N(t) ⩽ N(0)e−dt +
b

d

(
1 − e−dt

)
for t ∈ [0,∞). Particularly, N(t) ⩽ b/d for t ⩾ 0 if N(0) ⩽ b/d. Also if the above operations are only
applied for the first two equations of the model (2.2) then it can be seen that S(t) ⩽ b

k
β1
β2

ε1+(1−k)ε2+d
and

V(t) ⩽
b(k

β1
β2

ε1+(1−k)ε2)(
k

β1
β2

ε1+(1−k)ε2+d
)
(d+α)

for t ∈ [0,∞) if S(0) ⩽ b

k
β1
β2

ε1+(1−k)ε2+d
and V(0) ⩽

b(k
β1
β2

ε1+(1−k)ε2)(
k

β1
β2

ε1+(1−k)ε2+d
)
(d+α)

.

Hence Ω is positively invariant for system (2.2). So, the region Ω attracts all solutions and it is enough
to deal with the dynamics of (2.2) in Ω. Thus the model (2.2) can be considered in Ω, [18, 29].

Theorem 2.2. Eqution (2.3) has a unique solution with initial function S(t) = g1(t), V(t) = g2(t) and I (t) =
g3 (t) for −τ ⩽ t ⩽ 0.

Proof. It sufficient to show that f given in (2.3) is Lipschitz continuous in every compact subset M ⊂ Ω.
Let x, y ∈ M, then we write from the description of f

∥f (x) − f (y)∥
= |f1 (x) − f1 (y)|+ |f2 (x) − f2 (y)|+ |f3 (x) − f3 (y)|

= [kβ1 + (1 − k)β2] |x1 (0) x3 (0) − y1 (0)y3 (0)|
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+

[
2
(
k
β1

β2
ε1 + (1 − k)ε2

)
+ d

]
|x1(0) − y1 (0)|

+β3 |x2 (0) x3 (0) − y2 (0)y3 (0)|+ (d+α) |x2 (0) − y2 (0)|
+ [kβ1 + (1 − k)β2] e

−dτ |x1 (−τ) x3 (−τ) − y1 (−τ)y3 (−τ)|

+β3e
−dτ |x2 (−τ) x3 (−τ) − y2 (−τ)y3 (−τ)|+ (d+ µ+ γ) |x3 (0) − y3 (0)|

⩽ [kβ1 + (1 − k)β2] (|x3 (0)|+ |y1 (0)|) ∥x− y∥C +

[
2
(
k
β1

β2
ε1 + (1 − k)ε2

)
+ d

]
∥x− y∥C

+β3 (|x3 (0)|+ |y2 (0)|) ∥x− y∥C + (d+α) ∥x− y∥C
+ [kβ1 + (1 − k)β2] |(|x3 (−τ)|+ |y1 (−τ)|)| e−dτ ∥x− y∥C
+β3 (|x3 (−τ)|+ |y2 (−τ)|) e−dτ ∥x− y∥C + (γ+ d+ µ) ∥x− y∥C (2.6)

Taking into account the facts |xi (θ)| ⩽ b
d

for −τ ⩽ θ ⩽ 0 then we conlude

∥f (x) − f (y)∥ ⩽
{
([kβ1 + (1 − k)β2] +β3)

2b
d

(
1 + e−dτ

)
+ 2

(
k
β1

β2
ε1 + (1 − k)ε2

)
+ 3d+ µ+ γ+α

}
∥x− y∥C .

from (2.6). So if we take

L ⩾ ([kβ1 + (1 − k)β2] +β3)
2b
d

(
1 + e−dτ

)
+ 2

(
k
β1

β2
ε1 + (1 − k)ε2

)
+ 3d+ µ+ γ+α,

the inequality
∥f (x) − f (y)∥ ⩽ L ∥x− y∥C

hold in every compact subset M ⊂ Ω.

2.2. The Equilibrias and Reproduction Number of the Model
Now, let us find the disease-free equilibria for the model (2.2). Using I0 = 0 in the system of algebraic

equations

0 = b− [kβ1 + (1 − k)β2]S0I0 − (k
β1

β2
ε1 + (1 − k)ε2 + d)S0

0 = (k
β1

β2
ε1 + (1 − k)ε2)S0 −β3V0I0 − (d+α)V0

0 = [kβ1 + (1 − k)β2]S0I0e
−dτ +β3V0I0e

−dτ − (d+ µ+ γ) I0

the disease-free equilibrium point is found as

P0 = (S0,V0, I0) =

 b

kβ1
β2

ε1 + (1 − k)ε2 + d
,

b(kβ1
β2

ε1 + (1 − k)ε2)(
kβ1
β2

ε1 + (1 − k)ε2 + d
)
(d+α)

, 0

 .

To get R0 we use the next generation matrix method, [12]. Let X = (I,V ,S)T , so we can write

dX

dt
= P(X) −F(X)

from (2.2) such that

P(X) =


[kβ1 + (1 − k)β2]S(t− τ)I(t− τ)e−dτ +β3V(t− τ)I(t− τ)e−dτ

0

0
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and

F(X) =


(d+ µ+ γ) I (t)

−(kβ1
β2

ε1 + (1 − k)ε2)S (t) +β3V (t) I (t) + (d+α)V (t)

−b+ [kβ1 + (1 − k)β2] S (t) I (t) + (kβ1
β2

ε1 + (1 − k)ε2 + d)S (t)

 .

Differentiating P(X) and F(X) with respect to I, V , S and computing respectively them at the disease-
free equilibrium P0 = (S0,V0, I0), we get

P = dP1x1 (P0) =
[
e−dτS0[kβ1 + (1 − k)β2] + e−dτβ3V0

]
,

F = dF1x1 (P0) = [d+ µ+ γ]

and

PF−1 =
e−dτ (S0[kβ1 + (1 − k)β2] +β3V0)

d+ µ+ γ
.

Therefore, the basic reproduction number of the model (2.2) is found as

R0 = ρ
(
PF−1) = e−dτ (S0[kβ1 + (1 − k)β2] +β3V0)

d+ µ+ γ

=
be−dτ

{
[kβ1 + (1 − k)β2] (d+α) + (kβ1

β2
ε1 + (1 − k)ε2)β3

}
(d+ µ+ γ)

(
d+ kβ1

β2
ε1 + (1 − k)ε2

)
(d+α)

.

To determine whether another equilibrium point of the system (2.2) exists or not, we must solve the
following system of algebraic equations with I∗ ̸= 0.

0 = b− [kβ1 + (1 − k)β2]S∗I∗ − (k
β1

β2
ε1 + (1 − k)ε2 + d)S∗

0 = (k
β1

β2
ε1 + (1 − k)ε2)S∗ −β3V∗I∗ − (d+α)V∗, (2.7)

0 = [kβ1 + (1 − k)β2]S∗I∗e
−dτ +β3V∗I∗e

−dτ − (d+ µ+ γ) I∗.

From the system (2.7), we can respectively obtain

S∗ =
b

kβ1
β2

ε1 + (1 − k)ε2 + d+ [kβ1 + (1 − k)β2]I∗
,

V∗ =
b(kβ1

β2
ε1 + (1 − k)ε2)(

kβ1
β2

ε1 + (1 − k)ε2 + d+ [kβ1 + (1 − k)β2]I∗

)
(β3I∗ + d+α)

(2.8)

Taking into account (2.7) and (2.8), we obtain the equation

c0I
2

∗ + c1I∗ + c2 = 0, (2.9)

where

c0 = − [kβ1 + (1 − k)β2]β3(d+ µ+ γ),
c1 = be−dτβ3 [kβ1 + (1 − k)β2]



Ü. Çakan, E. Laz, Math. Nat. Sci., 7 (2021), 26–40 33

−(d+ µ+ γ)

{
[kβ1 + (1 − k)β2] (α+ d) + (k

β1

β2
ε1 + (1 − k)ε2 + d)β3

}
,

c2 = be−dτ

[
[kβ1 + (1 − k)β2] (α+ d) + (k

β1

β2
ε1 + (1 − k)ε2)β3

]
−(α+ d)(d+ k

β1

β2
ε1 + (1 − k)ε2)(d+ µ+ γ)

= (α+ d)(d+ k
β1

β2
ε1 + (1 − k)ε2)(d+ µ+ γ) (R0 − 1)

Let R0 < 1. Then c2/c0 > 0.
On the other hand if we define

M =
be−dτβ3 [kβ1 + (1 − k)β2]

(d+ µ+ γ)
{
[kβ1 + (1 − k)β2] (d+α) + (kβ1

β2
ε1 + (1 − k)ε2 + d)β3

}
then

c1 = (d+ µ+ γ)

{
[kβ1 + (1 − k)β2] (d+α) + (k

β1

β2
ε1 + (1 − k)ε2 + d)β3

}
(M− 1) .

Also taking into account that
R0

M
> 1,

we can say that M < R0 and so c1/c0 > 0 for R0 < 1. Hence we conclude that all roots of equation (2.9)
are negative, for R0 < 1.

When R0 > 1, c2/c0 < 0 and so equation (2.9) has only one positive root. This root is called as endemic
equilibrium and we represent it with P∗.

Proposition 2.3. Model (2.2) always has an equilibrium P0. If R0 ⩽ 1 then P0 is the only equilibrium in Ω; if
R0 > 1 then there are two equilibrias; P0 and P∗.

3. Stabilities of the Equilibrias

In this section, we deal with stabilities of the disease-free equilibrium point P0 and the endemic equi-
librium point P∗ of the system (2.2).

Theorem 3.1. P0 is locally asymptotically stable if R0 < 1, and unstable if R0 > 1.

Proof. The Jacobian matrix at P0 of the system ( 2.2) is

J(P0)

=


−kβ1

β2
ε1 − (1 − k)ε2 − d 0 −[kβ1 + (1 − k)β2]S0

kβ1
β2

ε1 + (1 − k)ε2 −d−α −β3V0

0 0 e−dτ {[kβ1 + (1 − k)β2]S0 +β3V0}− (d+ µ+ γ)

 .

Thus, the corresponding characteristic equation is described by(
−k

β1

β2
ε1 − (1 − k)ε2 − d− λ

)
(−d−α− λ) [(d+ µ+ γ) (R0 − 1) − λ] = 0. (3.1)
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It can be easily seen that the equation (3.1) always has negative eigenvalues λ1 = −kβ1
β2

ε1 − (1 − k)ε2 − d,
λ2 = −d−α. Then, the other eigenvalue of characteristic equation (3.1) determined by

λ3 = (d+ µ+ γ) (R0 − 1) . (3.2)

If R0 < 1, then all roots of equation (3.1) are negative. On the other hand, if R0 > 1 then in this case, one
of roots of the equation (3.1) has positive real parts. Therefore, if R0 < 1 then P0 is locally asymptotically
stable; if R0 > 1, is unstable.

Theorem 3.2. P0 is globally asymptotically stable if R0 < 1.

Proof. Let us define a nonnegative function:

L (t) = I (t) + e−dτ

(
[kβ1 + (1 − k)β2]

∫t
t−τ

S (z) I (z)dz+β3

∫t
t−τ

V (z) I (z)dz

)
.

As can be seen L (t) = 0 if I (t) = I0, S (t) = S0, V (t) = V0. Differentiating with respect to time yields and

considering the facts S(t) ⩽ b

k
β1
β2

ε1+(1−k)ε2+d
and V(t) ⩽

b(k
β1
β2

ε1+(1−k)ε2)(
k

β1
β2

ε1+(1−k)ε2+d
)
(d+α)

then we obtain

dL

dt

= I(t)
[
e−dτ {S(t) [kβ1 + (1 − k)β2] +β3V(t)}− (γ+ d+ µ)

]
= I(t)(γ+ d+ µ)

[
e−dτ {S(t) [kβ1 + (1 − k)β2] +β3V(t)}

(γ+ d+ µ)
− 1

]

⩽ I(t)(γ+ d+ µ)

e−dτ
(
b [kβ1 + (1 − k)β2] +

(
kβ1
β2

ε1 + (1 − k)ε2 + d
)
β3V(t)

)
(
kβ1
β2

ε1 + (1 − k)ε2 + d
)
(γ+ d+ µ)

− 1


⩽ I(t)(γ+ d+ µ)

e−dτb
{
[kβ1 + (1 − k)β2] (d+α) +β3

(
β1
β2

ε1 + (1 − k)ε2

)}
(
kβ1
β2

ε1 + (1 − k)ε2 + d
)
(γ+ d+ µ) (d+α)

− 1


= I(t)(γ+ d+ µ) (R0 − 1) .

So we obtain

dL

dt
⩽ 0

for R0 < 1. If the fact dL
dt

= 0 at the point P0 is used, this shows that L is a Lyapunov function in Ω for
(2.2). According to LaSalle’s Invariance Principle the limit set of each solution is contained in the largest
invariant subset of {

(S,V , I) :
dL

dt
= 0

}
.

Also the largest invariant subset consists only singleton P0 for R0 < 1. Hence P0 is globally asymptotically
stable.

Theorem 3.3. P∗ is globally asymptotically stable if R0 > 1.

Proof. By taking into account P∗ = (S∗,V∗, I∗), we consider the following;

U (t) = U1 (t) +U2 (t)
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such that

U1 (t) = S∗h

(
S(t− τ)

S∗

)
+ V∗h

(
V(t− τ)

V∗

)
+ edτI∗h

(
I(t)

I∗

)
and

U2 (t) = [(kβ1 + (1 − k)β2)S∗I∗ +β3V∗I∗]

∫t
t−τ

h

(
I(z)

I∗

)
dz

where
h(y) = y− 1 − lny.

On the other hand we should note that h (y) ⩾ 0 for all y > 0 and the function h achieves its global
minimum at y = 1.

Let us obtain the derivatives of U1 and U2 respectively. We firstly can write

dU1

dt

=

(
b− [kβ1 + (1 − k)β2]S(t− τ)I(t− τ) − (k

β1

β2
ε1 + (1 − k)ε2 + d)S(t− τ)

)
×

×
(

1 −
S∗

S(t− τ)

)
+

(
(k

β1

β2
ε1 + (1 − k)ε2)S(t− τ) −β3V(t− τ)I(t− τ) − (d+α)V(t− τ)

)
× (3.3)

×
(

1 −
V∗

V(t− τ)

)
+ [(kβ1 + (1 − k)β2)S(t− τ)I(t− τ) +β3V(t− τ)I(t− τ)]

(
1 −

I∗
I(t)

)
−eds (d+ µ+ γ) I(t)

(
1 −

I∗
I(t)

)
and

dU2

dt
= [kβ1 + (1 − k)β2]S∗I∗ ln

I(t− τ)

I(t)
+ [kβ1 + (1 − k)β2]S∗I(t)

− [kβ1 + (1 − k)β2]S∗I(t− τ) +β3V∗I∗ ln
I(t− τ)

I(t)

+β3V∗I(t) −β3V∗I(t− τ). (3.4)

If we use the following facts obtained from (2.7) in (3.3)

b = (kβ1 + (1 − k)β2)S∗I∗ + (k
β1

β2
ε1 + (1 − k)ε2 + d)S∗,

(d+α)V∗ = (k
β1

β2
ε1 + (1 − k)ε2)S∗ −β3V∗I∗,

edτ (d+ µ+ γ) = (kβ1 + (1 − k)β2)S∗ +β3V∗,

(k
β1

β2
ε1 + (1 − k)ε2)S∗ = β3V∗I∗ + (d+α)V∗

then we can write
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dU

dt
= dS∗

(
2 −

S(t− τ)

S∗
−

S∗
S(t− τ)

)
+((kβ1 + (1 − k)β2)S∗I∗)

(
1 −

S∗
S(t− τ)

+ ln
S∗

S(t− τ)

)
+(kβ1 + (1 − k)β2)S∗I∗

(
1 −

S(t− τ)I(t− τ)

S∗I(t)
+ ln

S(t− τ)I(t− τ)

S∗I(t)

)
+(d+ a)V∗

(
3 −

S∗
S(t− τ)

−
V(t− τ)

V∗
−

S(t− τ)V∗
S∗V(t− τ)

)
+β3V

∗I∗
(

1 −
S∗

S(t− τ)
+ ln

S∗
S(t− τ)

)
+β3V

∗I∗
(

1 −
S(t− τ)V∗
S∗V(t− τ)

+ ln
S(t− τ)V∗
S∗V(t− τ)

)
+β3V

∗I∗
(

1 −
V(t− τ)I(t− τ)

V∗I(t)
+ ln

V(t− τ)I(t− τ)

V∗I (t)

)
.

from (3.3) and (3.4).
Finaly taking into account that(

2 −
S(t− τ)

S∗
−

S∗
S(t− τ)

)
⩽ 0(

3 −
S∗

S(t− τ)
−

V(t− τ)

V∗
−

S(t− τ)V∗
S∗V(t− τ)

)
⩽ 0

and
1 − x+ ln x ⩽ 0

we can say that
dU

dt
⩽ 0.

Finally if the fact dU/dt = 0 at the point P∗ is used then it is conclude that U is a Lyapunov function
on Ω for (2.2).

In other respects, let us explore the largest invariant subset of{
(S,V , I) :

dU

dt
= 0

}
. (3.5)

The following equalities must be satisfied in order to have dU/dt = 0,(
1 −

S∗
S(t− τ)

+ ln
S∗

S(t− τ)

)
= 0(

1 −
S(t− τ)V∗
S∗V(t− τ)

+ ln
S(t− τ)V∗
S∗V(t− τ)

)
= 0 (3.6)(

1 −
V(t− τ)I(t− τ)

V∗I(t)
+ ln

V(t− τ)I(t− τ)

V∗I (t)

)
= 0

So we get S(t) = S∗, V(t) = V∗ and I(t) = I∗ from (3.6).
Hence the largest invariant subset of (3.5) consists only P∗. By the LaSalle’s principle [21], we infer that

solutions of (2.2) tends to the endemic equilibrium P∗. More clearly, S(t) → S∗, V (t) → V∗ and I(t) → I∗
as t → ∞. This shows that P∗ is globally asymptotically stable on Ω.
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Example 3.4. Let we consider a population with the followings,

b = 4000, β1 = 1.6 × 10−8;β2 = 0.8 × 10−8, β3 = 1 × 10−13,

k = 0.4, d = 0.000015, µ = 0.015,

α = 0.5, γ = 0.15, s = 14.

Where we assume S (0) = 69 997 900, I (0) = 100, R (0) = 0, V (0) = E (0) = 1000.
Then the simulation of the course of disease according to the different vaccination rates in the pop-

ulation is obtained as the following figures. The figures are gotten using the Wolfram Mathematica 12.1
with NDSolve code.

Figure 1: Effect of vaccination of susceptibles who has not high risk.

Figure 2: Effect of vaccination of high risk susceptibles.
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Conclusion

In this study, a mathematical model, based on vaccination taking into account different levels of
susceptibility of individuals to an epidemic is created, and the effect of this strategy on the course of the
epidemic is analyzed. Then global stabilities of the equilibrias of the model are studied. Also a simulation
of the course of the disease according to the different vaccination rates in the population is presented.

Unlike the classical models, in the model presented in this paper, the effect of different susceptibility
levels on the total protection rate of the population with vaccination is considered. Also, one of the
original contributions of the model presented is that the protection provided by vaccination is taken into
account in inverse proportion to the contagiousness rates for individuals with different susceptibility
levels.

As can be seen in the figures above, changing of vaccination rate of the high risk group is more effective
than the other susceptibles. For example, when the vaccination rate of other susceptible individuals (ε2)
is increased from 0.001 to 0.004 by keeping the vaccination rate of high risk individuals is constant then
the maximum number of infectious from over 7 million decreases to about 5 million.

On the other hand, when the vaccination rate of high risk susceptible individuals (ε1) is increased from
0.001 to 0.004 by keeping the vaccination rate of other susceptible individuals is constant, the maximum
number of infectious decreases below 4 million.
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