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Abstract

In this paper, we use the Kudryashov methods to investigate the novel solutions to a nonlinear time fractional model. The 3D
and 2D figures are depicted for displaying the physical behavior of travelling solutions for diverse values of uncertain parameters
with constraint conditions. Also, via an alternative technique, we investigate the existence and uniqueness of solutions of the
governing model and we consider the UHR stability of the obtained solution.
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1. Introduction

The study of FNPDEs of physical and mathematical models rely on the investigation of the solutions
for nonlinear equations. Newly, diverse techniques have been applied to solve FNPDEs, like : SCM [5],
VIM [2], BTM [4], and the rest.

The purpose of this paper is to use interesting techniques, namely, Kudryashov methods [3], to ob-
tain the solutions for a nonlinear fractional differential equation with the Jumarie’s modified Riemann
Liouville derivative of order «, given by

1 d ("
DY = ———~— —p) ~ - <L 11
YT = ), (TP (T =5(0)dp, 0 <« (1)
Also, we show the UHR stability of the obtained solution of the governing models through an alternative
technique.

2. The fundamental notion of the Kudryashov methods

In this section, we propose the algorithm of the Kudryashov methods for an NPDE as follows: We
assume a common nonlinear PDE of the type:

N(u, D&u, D%u, DBy, DIDPu, DEDPy, ) =0, 0< B, a <1, 2.1)

in which u = u(x, t).
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Convert (2.1) into an ODE by means of

dxdp ctee
®:F(1+B)+F(1+oc)' u(x, t) =u(@), (2.2)

in which d and c are constants.
Rewrite (2.1) in the following NODE form:

N(uw, v/, u”’,u”,...)=0. (2.3)
Suppose the general solution of (2.3) can be written as
u(0) = ag + a1k(©) + a2k?(@®) + - - - + ank™N (©), (2.4)
where Qi are retrieved later. Note that N € IN can be computed via the homogeneous balance
1IN
principle.

In the two subsections below, we express the idea of Kudryashov method I (KM I) and Kudryashov
method II (KM II), separately.

2.1. KM1I
Here, assume
1
which satisfies
k'(®) =k(©)(k(B) —1)In(a). (2.6)

Based on (2.3) and (2.4), a nonlinear system of algebraic type is gained, and by solving it, solitons of
(2.4) are obtained.

2.2. KM II
Here, assume
1
k(®) = (B+ A)cosh(®) + (B — A) sinh(©)’ @7)
which satisfies
(k'(©))?> = k?(©)(1 — 4BAK?*(©)). (2.8)

According to (2.3) and (2.4), a nonlinear system of algebraic type is gained, and by solving it, solitons
of (2.4) are obtained.
3. Application of the Kudryashov methods

Consider the following space-time nonlinear fractional equation which describes ion sound waves in
plasma,

D2%u + D2%u 4 D¥uD%u + uD%(D%u) + D2%(D?*u) =0, « € (0,1]. (3.1)
Consider the following transformation
kx* ct
0= + ,
NMNM+«o T+« (3.2)
u(x, t) =u(0).

in which k, ¢ # 0 are fixed.
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Setting (3.2) in (3.1), we get
2Kk c*u” + kew? +2(kK* + ¢?)u = 0. (33)
Here, we get N = 2. Presume the solutions of (3.3) can be gained by
$(0) = ap + k() + az(k(0))?, (3.4)

in which a; , are constants to be determined later.
—~—
i=123

Now, in the two subsections below, we propose the applications of KM I and KM II, separately.
3.1. Application of KM I
Making use of (3.3), (3.4) and (2.6), we get the system of algebraic equations below:

cka% +2c%ap 4+ 2k%ay = 0,

21In(a)?c®k?a; + 2kcagay + 2c¢2a; + 2k%a; =0,

—61n(a)’c®k?a; +81In(a)®c*k*ay + 2kcagas + kca% +2c%ay +2k%a; =0,
41In(a)*c*k?a; — 201In(a)?c*k?ay + 2ckaya; =0,

121n(a)®c®k*ay + keas = 0.

By solving the above system, we have that

c=c, K=o
VIn(a)2cz2 -1
2¢?In(a)? 12¢%In(a)?
ao = —_— al - 7
In(a)2c2—1 In(a)2c2—1
12¢21In(a)?
Q@=t——
In(a)?cz—1
and
c
c=c, =t
In(a)?cz—1
12¢?1In(a)?
ap =0, a = ,
—In(a)?cz -1
12¢21In(a)?
a=7F

vV—In(a)2c2—1

According to the obtained results, the following solitons to (3.1) are obtained

2c%In(a)?
LL(X, t) =+ L@

In(a)2c2—1

12¢21In(a)? 1

In(a)2c2 — T e

nlayet—1 1+da W ) (3.5)

2
12¢% In(a)? 1
11’1((1)202 — 1 i\/ln(aizczflanr ct® ’
1 + dCl Ml+a) Ml+«o)
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and

12¢21In(a)? 1
u(x’/ t) = :F + [ X
—In(a)?cz -1 In(@)2c2—1 et
1+da Tt o) REN(E=Y)
2 (3.6)
12¢2In(a)? 1
- ln(a)2C2 - 1 * ln(a(; c 71X£x ctX
1+da TITa) +rir

The Figures 1 and 2 display the plots of (3.5) for specific values and « = 0.1,0.2,0.3, and also the
Figures 3 and 4 display the plots of (3.6) for specific values and a = 2,4, 6.
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Figure 1: The plots of the real part of (3.5) for « = 0.1,0.2,0.3.
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Figure 2: The plots of the imaginary part of (3.5) for « = 0.1,0.2,0.3.
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Figure 3: The plots of the real part of (3.5) for a =2,4,6.
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Figure 4: The plots of the imaginary part of (3.5) for a = 2,4, 6.
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3.2. Application of KM II

Making use of (3.3), (3.4) and (2.8), we obtain the system of algebraic equations below

cka% +2c%ag +2k%ap =0,

2c%2a; + 2ckaga; +2c¢%a; +2k%a; =0,
8c?k%ay + 2ckagas + cka% +2c%ay +2k%a; =0,
—16ABc’k?a; +2ckajap =0,

— 48ABc’k*a, + ckad = 0.

By solving the obtained system, we get

c=c, k== ,
4c2 —1
8c2
ap ==+ s a _0/
0 42 —1 !
4 2
S 8c“AB ,
4c2 —1
and
c=c, K=k
—4c2—1
aO :0’ Cl1 :0,
48c2AB
a =t—.
vV—4c2 —1

Through the obtained results, the following solitons to (3.1) are obtained

2
u(x,t) == 8
4c2 -1
2
3.7
N 48c2AB 1 o9
v — iﬁx‘x N ] :I:icc = x & R ’
¢ (B + A) cosh( rvéio]() + Firay) T (B—A) sinh( }/(ﬁ) + rire)
and
2
48c2AB 1
u(x, t) = —Zcz—l Em—— (3.8)
(B+A) cosh(i1 e + miray) + (B—A)sinh(—¥a55— + rifvay)

The Figures 5 and 6 display the plots of (3.7) for specific values and o« = 0.1,0.2,0.3, and also the
Figures 7 and 8 display the plots of (3.8) for specific values and a = 2,4, 6.
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Figure 5: The real parts of (3.7) for x =0.1,0.2,0.3.
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Figure 6: The imaginary parts of (3.7) for o« =0.1,0.2,0.3.
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Figure 7: The real parts of (3.7) for a =2,4,6.
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Figure 8: The imaginary parts of (3.7) for a = 2,4, 6.
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4. Discussion

Table 1, present the absolute value of the solutions (3.5), (3.6), (3.7), and (3.8) obtained through
Kudryashov methods, with diverse point sources through arbitrary, and « = 0.2.

Figure 9, shows the plots of the differences between the absolute value of the solutions (3.5) and (3.6),
and also the differences between the absolute value of the solutions (3.7) and (3.8), respectively.

Based on Table 1, in Table 2, separately, we propose the differences between solutions (3.5), (3.6), (3.7),
and (3.8), represented by |Au(x, t)|, for fixed x, diverse values of t, and « = 0.20. It is clear that these
differences gained by the KM I are less than those of the KM II. In other words, for fixed x, by changing
t, the KM I results in more minor changes than the KM II. Therefore, the obtained solution by KM I
are stable against small perturbations, and we can conclude the results gained by the KM I has higher
accuracy than the KM II.
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Figure 9: The 2D with the differences between the absolute value of the solutions (3.5) and (3.6), and also the differences between
the absolute value of the solutions (3.7) and (3.8).

Table 1: The absolute value of the solutions (3.5), (3.6), (3.7), and (3.8).

KM I KM II

X t u(x,t) | ual(x,t) | ui(x,t) | up(x,t)
0.012 | 0.012 | 1.860 4.022 4.238 11.268
0.037 | 1.595 3.832 2.881 10.264
0.062 | 1.468 3.735 2.315 9.858
0.037 | 0.012 | 1.585 4.005 4.279 10.974
0.037 | 1.358 3.812 2.900 10.059
0.062 | 1.249 3.713 2.327 9.692
0.062 | 0.012 | 1.453 3.994 4.304 10.826
0.037 | 1.244 3.799 2.912 9.957
0.062 | 1.144 3.699 2.335 9.609
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Table 2: The differences between the absolute value of solutions (3.9) and (3.10), represented by |Au(x, t)|, for fixed x and diverse
values of t.

KM I KM II

X t [Au (x, )] | [Auz(x, t)] | [Aw(x, t)] | [Aua(x, t)]
0.012 | 0.012-0.037 | 0.265 0.190 1.357 1.004
0.037-0.062 | 0.127 0.097 0.566 0.679
0.012-0.062 | 0.392 0.287 1.923 1.410
0.037 | 0.012-0.037 | 0.227 0.193 1.379 0.915
0.037-0.062 | 0.109 0.099 0.573 0.367
0.012-0.062 | 0.336 0.292 1.952 1.282
0.062 | 0.012-0.037 | 0.209 0.195 1.392 0.869
0.037-0.062 | 0.100 0.100 0.577 0.348
0.012-0.062 | 0.309 0.295 1.969 1217

5. Exploiting the Cadariu—-Radu method

Now we propose the UHR stability for (3.1) using an alternative technique from the literature [1]:

Theorem 5.1. Consider the Banach space A, x1 € A, € : A? — [0, 00 and the contractive function & : A — A
with £(&x1, 6x2) < te(x1,X2), where v < 1. [f we get a sp € N s.t. €(&5x1, &5t yxq) < oo, for every s > sp,
then, we have that

* the fixed point x5 of & is the convergence point of {&%x1};
* X; is the unique fixed point of & in {x2 € A| €(&Poxy,x2) < oof;
* (I—delxa,x3) < elx2, 6x2) for every x2 € A.

Now, consider (3.3) as defined by
1 kZ 2
W S

——u=0. 5.1
2kc k2c2 v (.1)

Theorem 5.2. Every solution \ : [0, +00) — [0, +00) of (5.1) is bounded.
Proof. Multiplying (5.1) by u/(©) and integrating it from 0 to ©, we get

5 K42
uw +

2
il W=D 2
6ke 222 v T (5-2)

where b is the integral constant. Now, we get

K+c? , K4, 1

u- < u” 4+ =

2k2¢2 2k2¢2 2
1

3
=—— b.
6kc +

(w)?

K2—c?

T a2, where a € R.

1 /3
Assume b := e+
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Therefore, we have

K? + c? 2, Ls_ 1 s K> —c% ,
5 U+ ——uU ——a ———55a
2k?2¢? 6kc 6kc 2k?2c?

K 4+c2 5 5 3.3
= S (u"—a )+%(u —a’)
k2 +¢? 1
= T—;ccz(u_ a)(u+a)+ @(u— a)(u® +ua+ a?)
K2 2 1
= (u— a)[%(u—l— a)+ %(uz—l—ua—k a?)]
= (u— a)[iuz—i— (7k2+C2 o ut Kic +Cza—l— a—z}
N 6ke 2k2c2  6ke 2k2c2 6kc
—(U,—Cl) u_‘_i (]<2—|-(:2)+(1+\/(]<2—|—(32+(1)2_2(k2—|-(32a+(]_2)
N 3kc | 2k2c2 6kc 2k2c2  6kc 3kc 2k2c? 6kc
wg Lfexe a \/(W+a)z_2(k2+cza+c@)
3ke | 2k2¢2 6kc 2k2¢2  6kc 3kc 2k2c? 6kc' | /)°
Thus,
w—a) (w241 (M) T \/1(3—2a)(3k2+3c2+ ak?)| ) <o
3ke | 2k2c? 6kc 18 =
Therefore, there is a constant M > 0, s.t. [u| < M. O

We now have the following theorem.

Theorem 5.3. Consider \p € C[0, co) which satisfies the following inequality

s o1 5 K242
'u + 2kCu + 20 ull <V¥YO), ©c][0,00), (5.3)
and also, assume
C)
J Y(s)ds < XY¥Y(O) forsome 0< N <1, (5.4)
0

where © € [0,00), ¥ : [0,00) — (0, 00) is continuous.

Assume X2 ki;rc‘éz + I]Z/Cll] <1, in which 0 < X < 1, and kc < 0. Therefore, we can obtain a u, € C[0,00), s.t.

O rt 1 k2+ 2
U, (O) :_Jo Jo (muz(s)—i—](chu(s))dsd't, (5.5)

and

1

[(©) —us(©)] < -
1—1X2 [kkjcﬁ + I%I}

Y(@), (5.6)

where ©® € [0,00), 0 < X < 1.
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Proof. Assume A := C[0, 00), and consider a mapping ¢ : A — [0, oo}, defined by
e(u(O),u(@)) = inf{Q >0: lw(O)-ud)] <Q¥O), ©c [O,oo)}. (5.7)

Now, define & : A — A as

® Tt/ K2 4 2
Gu(0) :—L L <2kcu2(s)—|—kzczcu(s)>dsd’r. (5.8)

We prove G is contractive on A. Assume u,u € A, Q > 0, and ¢(u(0),u(0)) < Q.
For each © € [0, 00),

R r® rT k2+C2 R 1 ) R
ISu(©) ~S@)| < | | Sz |uls) ~ )| + I lws) ~@(s)| ) asar
r® rt 2 2
ke +c ~ 1 ~ ~
< — — — dsd
| (B s =)+ 1 o)~ tsnuts) 4 s |  asae
O rt 2 2
~ ke +c 1
< — _
<[]} (s -0 | Ea + gpelituts)t + atsin] asar
QO rt 2 2
k®+c¢
<
<J, ], (o o Jos
K+c2 M
<R2Q|—— +|—||¥(O).
[ 2z kc|] (©)
in which0 < X < 1,and M > 0.
Thus, we get
(&(0),6h(0)) < N2 | =+ || e(h(®),h(),
c ke
in which 0 < N < 1 and © € [0,00). Therefore, we can conclude the contractively property of &, since
NZ[k;t; M |]

By considering (5.3) and integrating it twice, we have

@ /1 k2 + ¢?
Hw(@HL L (Muz(swkzczu(s))dsdr <XY(©), ©€0,0) (5.9)

where 0 < X < 1. Therefore, we get
e(6Y(0),¥(0)) <1,

in which © € [0, 0o). Then, the conditions of Theorem 5.1 are satisfied, and we have that
1

Y(@), ©€l0,00), (5.10)
1- XZ[kﬁifﬂw]

W(O) —e(0)] <

where 1), (0) = — fo o <2kc )+ k]izfrc§2u(s)> dsdt is a unique solution in {v €A e(GY,,v) < oo}.
O
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6. Conclusion

In this paper, we applied the Kudryashov methods to investigate the novel solutions to a nonlinear
time fractional model. The 3D and 2D figures were depicted for displaying the physical behavior of
travelling solutions for diverse values of uncertain parameters with constraint conditions. Also, via an
alternative technique, we investigated the UHR stability of the obtained solutions.
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