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Abstract

In this study, a uniqueness theorem is given for Sturm-Liouville problem with special singular potential. We prove that
singular potential function can be uniquely determined by the spectral set {An (qo, hm)};rf; . (©2017 All rights reserved.
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1. Introduction

Inverse problems are the problems that consist of finding an unknown property of an object or medium
from the observation of a response of this object or medium, to a probing signal. Inverse problems, in
particularly self-adjoint ones, received extensive in last times such problems often emerge in mathematics,
mechanics, physics, electronics, geophysics and many branches of science world.

Let ¢ = —dd—; + ¢ (x) be the Sturm-Liouville operator defined by the Dirichlet boundary conditions
as self-adjoint operator in [2[0,1] and 0 < A\ < Ag < --- be its eigenvalues. Spectral datas are spectra,
eigenfunction, normalizing constants, spectral functions, scattering data, etc. An early important result
in this direction which gave vital impetus for the further development of inverse problem theory, was
obtained. Inverse problems from two spectra were the most simple in their formulation and well-studied
in [1, 3]. Mar¢enko and Levitan used the transformation to prove that the eigenvalues and norming
constants uniquely determine potential function [13, 15]. Some effective methods of constructing a regular
and singular Sturm-Liouville operator for a spectral function or for two spectra are given [2, 8, 11, 19]. We
note that the detail of inverse problem for singular equations are given in the monographs and references
therein [5, 7,9, 17, 18].

In some recent interesting works, [10, 12, 14] have taken a different approach to inverse spectral theory
for the Sturm-Liouville problem. And then inverse problems have been studied by several authors [20, 21].

As a result, these types of studies created a big impact on the world of natural science. The works
still continue intensive on inverse spectral problem. We mentioned that analogous results are given by
Mclaughlin and Rundell in [16].

In our study, we will deal with a uniqueness theorem for Sturm-Liouville operator having special
singularity type. We show that if the spectral set {[An (qo, hm )]}, n=0,1,2,--- } for distinct hy, can
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be measured, then the spectral set is sufficient to determine the potential q (x) = X% +qo(x).
In this section, we will focus on some important facts which will be used in this research.

2. Preliminary knowledge

Lemma 2.1 (Riemann-Lebesgue’s Lemma [4]). If f is Lebesque integrable on [—m, 7|, then

7T 7T
lim J f(x)cosnxdx =0 = lim J f (x) sinnxdx.
n—oo n—o0

“r —7T

We consider the singular Sturm-Liouville problem as follows

-y’ + Liﬁqo(x)}y:?\y, (W =A0<x<m), (2.1)
y(0) =0, (2.2)

y'(m) —hy(n) =0, (2.3)

y' (1) — hpy(m) =0, (2.4)

7T
where q (x) = X% +qo(x), [xl|q(x)ldx < oo, & =constant, qo (x) € L[(0,7, 1 < p <2, h, hy, € R,
0

hm < hm+1/ (m = 1/2/' o )'
Similarly, we consider second problem as

—9"+ [xi+qo (Xﬂ@:un (W =A0<x<m), (2.5)
§(0) =0, (2.6)
§'(m) — hmg(m) =0, @7)

where the problem has above similar properties. Let AL (q) be the n-th eigenvalue for the equation (2.1)
with Dirichlet boundary conditions.

The authors in [12, 14, 20, 21] showed the recostruction of the potential function for regiiler Sturm
Liouville problem according to normalizing constants and eigenvalues. Our aim is to apply the same
method for singular Sturm Liouville problem.

In this section, we will try to obtain some asymptotic results and a reconstruction formula for potential
q, which has been obtained as solution of an inverse nodal problem.

Lemma 2.2 ([5, 7, 17]).
1 k 1
T O(n4_2p

),

1 7T( 8
A S (F+ae(t))dt—h
where k = 210°1P = .

Lemma 2.3. Let Ay, be the n-th eigenvalue of the boundary problem (2.1)-(2.3), for a fixed index n, then Ay, satisfies
AR <A < AR

Theorem 2.4 ([17]). Solution of the boundary value problem (2.5)-(2.6) is

X
in A in A
y(x,A) = s X—l—JK(x,s) SH;\ Sds,
0

A

where the kernels K (x, s) is the solution of the equation
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92K 5 02K 8
axz_[ +q0(X)]Kasz—[SP+QO(S)}K,

with conditions

K(x,x) = ;J(qo (s)—qo(s))ds, K(x,0)=0.
0

Now, merely one of the kinds of the inverse problem is solved. We give the solution of the inverse
problem for special singularity potential as follows.

Theorem 2.5 ([6]). The equation (2.1) has fundamental ¢ (x,A) and V¥ (x,A) solutions that satisfies the following
asymptotic formulas

@ (x,A)=x[1+0(1)], o (x,A)=1+0(1),

oA =1+0(1), w’(x,x)=o<1),

X

for each eigenvalue A and x — 0 then the entire function ¢ (x, A) with respect to A and x > 0 provides the following
inequalities

@ (%, A)] < xe™ M exp {qu (s)ds},
0

sin Ax
A

® (X/ ?\) -

ngslq(s)ldsexp {Im?\x—i—qu(s)ds},
0

0

A (x,A) —sinAx| < {Gl (0) — oy ()1\)] exp {Im)\x—i-Js Iq (s)] ds} ,
0
where

o1 () = [olslas,  wlx) = [la(s)ds

Theorem 2.6. Let Ay, (qo, h) be n-th eigenvalue of the boundary-value problem (2.1)-(2.3). For a fixed index n,
then eigenvalue Ay (qo, h) is strictly increasing in h and

AR (qo) < An (qoh1) < An (qoh2) < -+ < An (qo,hm) < --- < AR (qo) - (2.8)

Proof. We see that A, (qo, h) is a continuous function in h. Now we prove that A, (qo, h) is monotonous
function in h. Using Lemma 2.3, we have

oA L ) | 500 00y B0 A (G0 M) = Aldo WY (o n law ), (29

—y" (%, An (qo, N+ AN) + [S + g0 ()] Yy (%, An (g0, h+ Ah))
=A(qo,h+ Ah)y (x,An (qo, h+ Ah)).

Multiplying (2.9) by y (x, An (o, h+ Ah)), (2.10) by y (x,An (qo, h)) and subtracting and integrating from
0 to 71, we obtain

(2.10)

A)\n (qO/ h) JU (X/}\n (qOI h))y (xi}\n (qOI h+Ah’)) dx = Ahy (T[/)\n (qOI h))y (7[/ }\TL (qOI h+Ah’)) s (211)
0
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where AN, (qo, h) = An (qo, h+Ah) — A, (qo, h).
By dividing (2.11) by Ah and letting Ah — 0 in (2.8) we have

ijz (%, An (do, h)) dx =12 (7, A (do, h). (212)
0

If y (71, Av, (qo, h)) =0, theny’ (71, A, (qo, h)) = 0. According to uniqueness theorem of solution, this yields

y (X/}\TL (q0/ h)) =0.
It is contradiction with the eigenfunction y (x,An (qo, h)) # 0 corresponding to eigenvalue A, (qo, h).

7T
Therefore, y2 (x, An (qo, h)) > 0 and Iyz (X, An (go, h)) dx > 0. By virtue of estimate (2.12) we find that
0

a)\n (qOI h)

oh > 0.

Hence Ay, (qo, h) is precisely increasing in h. Furthermore,

An (qO/ hm) < An (qO/ hm+1) , hm <hmit

3. The main theorem

Theorem 3.1. Let Ay, (qo, hm ) be the n-th eigenvalue of the boundary-value problem (2.1), (2.2), (2.3), (2.4) and
An (o, him) be the n-th eigenvalue of the boundary-value problem (2.5), (2.6), (2.7). For a fixed index n, if

}\TL (qOIhm):An (qOIhm)/ m:1/2/"’/

then
qo(x) =do(x), x€(0,7.

Proof. Multiplying (2.1) by y (x,A), (2.5) by § (x,A) and subtracting and integrating from 0 to 7, we obtain
7T
(9y' —yd')|y + J (G0 — qo) yGdx =0.
0

Using y (0,A) =0,y’ (0,A) =1 and § (0,A) =0, §' (0,A) = 1, this yields

(G (u Ay (A —y (A T (1, A)] +J(QO ~ qo)ygdx =0, (3.1)
0
We shall formulate as
Q(x) =40 (x) —qo(x), (3.2)
HA) = j (d0 — qo) yGdx. (3.3)

0

If the properties of y (x,A) and § (x,A) are considered, the function H (A) is an entire function of order %
in A. We see that

(G (RN Y (TN =y (RN G (L A)]5 s gy = O
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Using estimate (3.1), (3.2), (3.3) we can write the following equation
H O\n (qO/hm)) =0.

From Theorem 2.6, clearly, {(An (qo, hm))}-2; is a precisely monotonous and bounded sequence and then
there exists a A, (qo) € R, satisfies

ml—i>n—0}oo An (qO/ hm) = )\no (Clo) .
An, (qo) is a finite accumulation point of the spectrum set {(An, (qo, hm)) :rnoil It is well-known that the
set of zeros of every entire function which is not identically zero has not any finite accumulation point.

Therefore
H(A) =0, VAeC. (3.4)

According to Theorem 2.4 and Theorem 2.5, solutions equations (2.1), (2.5) can be expressed in the fol-
lowing integral forms respectively,

X
_sinAx sin As elmAlx
Yy (X,)\) = b\ +JK (X,S) X dS+ @) (7\|62p P (35)
0
G (x ) = sin Ax XK sin?xsd 0 eltmAlx 36
gx,A) = 3 + (x,s) 3 S+ W . (3.6)

By means of integral equations (3.5) and (3.6) we get

.2 x . . x . x . [Im A|x
_sin“ Ax _ sin Ax sin As sin As - sin At e
yy:)@+J(K(x,s)+K(x,s)) ~ x dS—i—JK(X,S) ) dSXJK(X,t) > dt—i—O(W).
0 0 0

Using the trigonometric addition formulas, extending the range of K (x,s) ,K (x,s) with respect to the
second argument, we obtain that

1 Xz e\Im}\Ix
J=-—— [1— 2A K (%, 2Adr+0 | ——= | |,
Y9 = o3 cos 2Ax +l (x,1) cos 2Ardr + A

where

X xX—2r
E(x,s)—Z[K(x,x—Zr)—i—f((x,x—ZT)—f— J K(x,t) K (x,t—2r)dt + J K(x,t)f((x,t—i—Zr)dt]. (3.7)

—x+2r -x

Substituting (3.7) into (3.4) and (3.3) and letting A — oo for all A, by means of Riemann-Lebesgue lemma
and applying some straight forward computations, we can find that

X
Q |:1 — cos2Ax + J K (x,T) cos ZATdT] dx =0,
0

Oy O—— 3

7T X
Q1 —cos2Ax] dx + J Q (x) J K (x, 1) cos2Ardrdx =0,
0 0
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and

lQ(x)dXZO,

JcosZAx Q(r) —JQ (x) l? (x,7)dx| dr =0.
0 T

Taking into account the completeness of the function cos 2Ax, we can write that

Q(r)—JQ(x)ﬁ(X,r)dx:o, 0<x<m (3.8)

Since (3.8) is Volterra integral equation, it has only trivial solution, Q (x) = 0. Therefore

Q(x) =do(x)—qo(x) =0,

almost everywhere on (0, 7] . This completes the proof. O

4. Conclusion

In this paper, a uniqueness theorem has proved for the solution of an inverse spectral problem having
singularity type on the interval (0, 7]. This theorem is discussed from a different view point.
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