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Abstract

In this present study, the response characteristics of a flexible member carrying harmonic moving load are investigated.
The beam is assumed to be of uniform cross section and has simple support at both ends. The moving concentrated force
is assumed to move with constant velocity type of motion. A versatile mathematical approximation technique often used in
structural mechanics called assumed mode method is in first instance used to treat the fourth order partial differential equation
governing the motion of the slender member to obtain a sequence of second order ordinary differential equations. Integral
transform method is further used to treat this sequence of differential equations describing the motion of the beam-load system.
Various results in plotted curves show that, the presence of the vital structural parameters such as the axial force N, rotatory
inertia correction factor r0, the foundation modulus F0, and the shear modulus G0, significantly enhances the stability of the
beam when under the action of moving load. Dynamic effects of these parameters on the critical speed of the dynamical system
are carefully studied. It is found that as the values of these parameters increase, the critical speed also increases. Thereby
reducing the risk of resonance and thus the safety of the occupant of this structural member is guaranteed.

Keywords: Response characteristics, flexural member, harmonic load, critical speed, resonance, foundation stiffness, assumed
mode, concentrated force.
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1. Introduction

The amplitude of the dynamic deflection and vibration control of beam-like structures carrying mov-
ing masses have long been an exciting subject and of great fundamental importance to many researchers.
In fact, it is one of the most important subjects in the area of structural dynamics and vibration control.
This is due largely to its enormous applications in engineering sciences. In particular, tracks on which ve-
hicle or train travels, fluid-conveying pipe system, beams under the actions of pressure waves and shafts
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or machining operations which requires axial motions can all be model as continuum systems continu-
ously supporting or carrying moving sub-systems. Bridges, railway bridges, cranes, cable ways, tunnels,
and pipes are the typical structural examples of the structure to be designed to support moving masses
and loads.

Consequently, there is a large volume of literature devoted to moving load problems in the past few
years see for instance [2, 4–6, 9, 10, 14, 19–22, 24, 28, 29, 31, 32, 34–38, 40] and the references therein. The
theoretical and experimental studies of the moving load problems have shown that moving loads may be
divided into three categories namely: moving oscillator, moving mass, and moving force. Vibrations of
beams due to moving oscillators are studied in [14, 17, 23, 33, 39], vibrations of beams due to a moving
mass are investigated in [3, 4, 13, 16, 25, 36, 41], and vibration of beams due to moving force have been
considered in [1, 8, 15, 18, 27, 40]. Moving load problem with or without elastic foundation has been
extensively studied and so many other aspects of the moving load problem have also been considerably
explored [7, 11, 12, 21, 26, 30, 34].

In this present study an approximate analytical solution of the transverse response of a simply sup-
ported Rayleigh beam resting on variable two-parameter elastic sub-grade and carrying harmonic variable
load traveling with constant velocity type of motion is obtained. Effects of internal and external damping
on the dynamic characteristics of a beam-like structural member carrying moving load are well studied.
Effects of these and some other vital structural parameters on the critical speed of this vibrating system
will also be established.

2. Mathematical formulation

Consider a structurally prestressed Rayleigh beam under the actions of traveling load of mass M.
The span length of the beam is finite and the mass is assumed to travel along the beam with a constant
velocity. Considering damping effects, the transverse displacement in terms of traveling time t and the
spatial coordinate is prescribed by the fourth order partial differential equation given by

EI
∂4W(x, t)
∂x4 −N

∂2W(x, t)
∂x2 + µ

∂2W(x, t)
∂t2

− µr0∂
4W(x, t)
∂x2∂t2

+ F(x)W(x, t) +De
∂W(x, t)
∂t

+Di
∂5W(x, t)
∂t∂x4 −

∂4

∂

[
G(x)

∂W(x, t)
∂x

]
= P(x, t).

(2.1)

Where EI is the flexural rigidity of the beam, µ is the mass per unit length of the beam, and F(x) and G(x)
are the variable foundation stiffness and shear modulus, respectively. W(x) is the deflection of the beam
at point x and time t . P(x, t) denotes the traveling load. A prime denotes differentiation with respect
to position coordinate x and an over-dot represents differentiation with respect to time t . The external
damping De and internal damping Di of the beam are taken to be proportional to the mass and stiffness
of the beam respectively and are given as

De = ηeµ, Di = ηiEI,

where ηe and ηi are the constants of proportionality.
In this study, it is assumed that the load function P(x, t) is given in the form

P(x, t) = h(x) coswt,

where h(x) is an arbitrary deterministic distributed load.
Now, considering the action of a concentrated harmonic force H(t) at a position, x = ut. The load

P(x, t) can be written as
P(x, t) = H0 coswtδ(x− ut),
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δ(·) is the well-known Dirac delta function with the property

∫b
a

δ(x− k)f(x)dx =


0, for k < a < b,
f(k), for a < k < b,
0, for a < b < k.

(2.2)

The variable foundation stiffness and shear modulus are respectively taken to be

F(x) = F0(4x− 3x2 + x3)

and
G(x) = G0(12 − 13x+ 6x2 − x3).

It is remarked here that the beam under consideration is assumed to have simple support at both ends
x = 0 and x = L . Thus boundary conditions are given as

W(0, t) = 0 =W(L, t),
∂W(0, t)
∂x

= 0 =
∂2W(L, t)
∂x2

and the initial conditions is given as

W(0, t) = 0 =
∂W(x, 0)
∂t

. (2.3)

Substituting equation (2.2) into (2.1) we have

EI
∂4W(x, t)
∂x4 −N

∂2W(x, t)
∂x2 + µ

∂2W(x, t)
∂t2

− µr0∂
4W(x, t)
∂x2∂t2

+ F(x)W(x, t)

+De
∂W(x, t)
∂t

+Di
∂5W(x, t)
∂t∂x4 −

∂

∂x

[
G(x)

∂W(x, t)
∂x

]
= H0 coswtδ(x− ut).

(2.4)

Equation (2.4) is the fourth order partial differential equation governing the flexural motion of the Struc-
turally prestressed Rayleigh beam.

3. Solution procedures

To find an approximate solution of the boundary-initial-value problem (2.1), an assumed mode method
is employed. By this method, the jth term approximate solution of (2.4) is sought in the form.

Wj(x, t) =
∞∑
m=1

Zm(t)Um(x), (3.1)

where Zm(t) are coordinates in modal space and Um(x) are the normal modes of vibration written as

Um(x) = sin
λmx

L
+Am cos

λmx

L
+Bm sinh

λmx

L
+Cm cosh

λmx

L
. (3.2)

It can be shown that, for a structural member having simple supports at ends x = 0 and x = L equation
(3.1) in view of equation (3.2) can be written as

Wj(x, t) =
∞∑
m=1

Zm(t) sin
mπx

L
. (3.3)

Substituting equation (3.3) into the governing equation (2.4), one obtains

EI
(mπ
L

)4 ∞∑
m=1

Zm(t) sin
mπx

L
+N

(mπ
L

)2 ∞∑
m=1

Zm(t) sin
mπx

L
+ µ

∞∑
m=1

Z̈m(t) sin
mπx

L
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+ µr0
(mπ
L

)2 ∞∑
m=1

Z̈m(t) sin
mπx

L
+ F0(4x− 3x2 + x3)

∞∑
m=1

Zm(t) sin
mπx

L
+De

∞∑
m=1

Żm(t) sin
mπx

L

+Di

(mπ
L

)4 ∞∑
m=1

Żm(t) sin
mπx

L
+G0(12 − 13x+ 6x2)

(mπ
L

)2 ∞∑
m=1

Zm(t) sin
mπx

L

+G0(13 − 12x+ 3x2)
mπ

L

∞∑
m=1

Zm(t) cos
mπx

L
= H0 coswtδ(x− ut),

which after some re-arrangements gives

∞∑
m=1

{(
µ sin

mπx

L
+ µr0

(mπ
L

)2
sin

mπx

L

)
Z̈m(t) +

(
De sin

mπx

L
+Di

(mπ
L

)4
sin

mπx

L

)
Żm(t)

+

(
EI
(mπ
L

)4
sin

mπx

L
+N

(mπ
L

)2
sin

mπx

L
+ F0(4x− 3x2 + x3) sin

mπx

L

+G0(12 − 13x+ 6x2 − x3)
(mπ
L

)2
sin

mπx

L
+G0(12 − 13x+ 6x2 − x3)

mπx

L
sin

mπx

L

)
Zm(t)

}
−H0 coswtδ(x− ut) = 0.

(3.4)

In order to determine the expression for Zm(t), it is required that the expression on the LHS of
equation (3.4) be orthogonal to the function sin kπxL . Thus, multiplying equation (3.4) by sin kπxL and
integrating from x = 0 to x = L leads to∫L

0

[ ∞∑
m=1

{(
µ sin

mπx

L
+ µr0

(mπ
L

)2
sin

mπx

L

)
Z̈m(t) +

(
De sin

mπx

L
+Di

(mπ
L

)4
sin

mπx

L

)
Żm(t)

+

(
EI
(mπ
L

)4
sin

mπx

L
+N

(mπ
L

)2
sin

mπx

L
+ F0(4x− 3x2 + x3) sin

mπx

L

+G0(12 − 13x+ 6x2 − x3)
(mπ
L

)2
sin

mπx

L
+G0(12 − 13x+ 6x2 − x3)

mπx

L
sin

mπx

L

)
Zm(t)

}

−H0 coswtδ(x− ut)

]
sin

kπx

L
dx = 0,

which after some simplifications yields

∞∑
m=1

{
(ϑ1 + ϑ2)Z̈m(t) + (ϑ3 + ϑ4)Żm(t) + (ϑ5 + ϑ6 + ϑ7 + ϑ8 + ϑ9)Zm(t)

}
=

∫L
0
H0 coswtδ(x− ut) sin

kπx

L
dx,

(3.5)

where

ϑ1 = µ

∫L
0

sin
mπx

L
sin

kπx

L
dx, ϑ2 = µr0

(mπ
L

)2
∫L

0
sin

mπx

L
sin

kπx

L
dx,

ϑ3 = D1

∫L
0

sin
mπx

L
sin

kπx

L
dx, ϑ4 = D2

(mπ
L

)4
∫L

0
sin

mπx

L
sin

kπx

L
dx,

ϑ5 = EI
(mπ
L

)4
∫L

0
sin

mπx

L
sin

kπx

L
dx, ϑ6 = N

(mπ
L

)2
∫L

0
sin

mπx

L
sin

kπx

L
dx,
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ϑ7 =

∫L
0
F0(4x− 3x2 + x3) sin

mπx

L
sin

kπx

L
dx, ϑ8 =

(mπ
L

)2
∫L

0
G0(12 − 13x+ 6x2) sin

mπx

L
sin

kπx

L
dx,

ϑ9 =
mπ

L

∫L
0
G0(13 − 12x+ 3x2) cos

mπx

L
sin

kπx

L
dx.

Noting property (2.2) and considering the mth particle of the vibrating system, equation (3.5) can then
be written after some rearrangements and simplifications as

Z̈m(t) +Q1Zm(t) +Q2Zm(t) =
Q4

2
[sinαt− sinβt], (3.6)

where,

Q1 =
ϑ3 + ϑ4

ϑ1 + ϑ2
, Q2 =

ϑ5 + ϑ6ϑ7 + ϑ8ϑ9

ϑ1 + ϑ2
, Q3 = ϑ1 + ϑ2, Q4 =

H0

Q3
, α = ω+

kπu

L
, β = ω−

kπu

L
.

To obtain solution of the second order ordinary differential equation (3.6) above, we subjected it to a
Laplace transform defined as

∼̇ =

∫∞
0
(·)e−stdt,

where s is the Laplace parameter. Invoking the initial condition (2.3), one obtains the simple algebraic
expression given as

Zm(s) =

Q4
2

[
α

s2+α2 −
β

s2+β2

]
s2 + sQ1 +Q2

,

which is further simplified to give

Zm(s) =
Q4

2(b1 − b2)

{
α

s2 +α2 .
1

s− b1
−

α

s2 +α2 .
1

s− b2
−

β

s2 +β2 .
1

s− b1
+

β

s2 +β2 .
1

s− b2

}
, (3.7)

where

b1 =
−Q1 +

√
Q2

1 − 4Q2

2
, b2 =

−Q1 −
√
Q2

1 − 4Q2

2
.

In order to obtain the Laplace inversion of (3.7), the following representations are made

f1(t) = sinαt, f2(t) = sinβt, g1(t) = e
b1t, g2(t) = e

b2t.

So that the Laplace inversion of (3.7) is the convolution of f ′is and gi’s defined by

fi ∗ gi =
∫t

0
fi(t− u)gi(u)du, i = 1, 2, 3, . . . .

Thus, Laplace inversion of (3.7) is given as

Zm(t) =
Q4

2(b1 − b2)
{IA − IB − IC + ID} , (3.8)

where

IA =

∫t
0
(sinαt cosαu− cosαt sinαu)eb1udu, IB =

∫t
0
(sinαt cosαu− cosαt sinαu)eb2udu,

IC =

∫t
0
(sinβt cosβu− cosβt sinβu)eb1udu, ID =

∫t
0
(sinβt cosβu− cosβt sinβu)eb2udu.

(3.9)
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Evaluating the integrals (3.9), yields

IA =
1

α2 + b2
1
{αeb1t −α cosαt− b1 sinαt}, IB =

1
α2 + b2

2
{αeb2t −α cosαt− b2 sinαt},

IC =
1

β2 + b2
1
{βeb1t −β cosβt− b1 sinβt}, ID =

1
β2 + b2

2
{βeb2t −β cosβt− b2 sinβt}.

Thus, equation (3.8) in view of (3.9) leads to

Zm(t) =
Q4

2(b1 − b2)

{
αeb1t −α cosαt− b1 sinαt

α2 + b2
1

−
αeb2t −α cosαt− b2 sinαt

α2 + b2
2

−
βeb1t −β cosβt− b1 sinβt

β2 + b2
1

+
βeb2t −β cosβt− b2 sinβt

β2 + b2
2

}
.

(3.10)

Thus, in view of (3.3), taking into account (3.10) one obtains

W(x, t) =
j∑

m=1

Q4

2(b1 − b2)

{
αeb1t −α cosαt− b1 sinαt

α2 + b2
1

−
αeb2t −α cosαt− b2 sinαt

α2 + b2
2

−
βeb1t −β cosβt− b1 sinβt

β2 + b2
1

+
βeb2t −β cosβt− b2 sinβt

β2 + b2
2

}
. sin

mπx

L
,

(3.11)

which represents the transverse response of structurally prestressed slender member to harmonic moving
loads.

4. Comments on the closed-form solution

Occurrence of resonance in a dynamical system is of a great concern in design engineering and en-
gineering analysis as the amplitude of vibration of a structural member carrying travelling loads may
grow without bound. Thus, this section seeks to examine and establish the conditions under which this
unpleasant phenomenon may occur. It is clearly seen from equation (3.11) that a structurally damped
system considered in this study will experience a state of resonance under any of the following stated
conditions:

i. b1α
2 + b3

1 = b2α
2 + b2b

2
1,

ii. b2α
2 + b3

2 = b1α
2 + b1b

2
2,

iii. b1β
2 + b3

1 = b2β
2 + b2b

2
1,

iv. b2β
2 + b3

2 = b1β
2 + b1b

2
2

(4.1)

and the velocity, at which this phenomenon may occur termed the critical velocity associated with the
conditions listed in (4.1) respectively are given as

u1
cr =

L

2πk

√
8Q2 + 2

√
Q2

1 − 4Q2 − 3Q2
1 −

ωL

kπ
, u2

cr =
L

2πk

√
8Q2 − 2

√
Q2

1 − 4Q2 − 3Q2
1 −

ωL

kπ
,

u3
cr =

ωL

kπ
−

L

2πk

√
8Q2 + 2

√
Q2

1 − 4Q2 − 3Q2
1, u4

cr =
ωL

kπ
−

L

2πk

√
8Q2 − 2

√
Q2

1 − 4Q2 − 3Q2
1,

where all the parameters are as previously defined.
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5. Numerical Result and discussion

In this section, the analysis proposed in the previous sections are illustrated by considering a ho-
mogeneous beam of modulus of elasticity E = 2.9012 × 109N/M2, the moment of inertial I = 2.87698 ×
10−3kgm2, the beam span L = 12.192m and the mass per unit length of the beam µ = 2758.291kg/m. The
load is also assumed to travel along the beam with constant velocity V = 3.128m/s, the values of founda-
tion moduli K0 are varied between 0N/m3 and 4 × 108N/m3, the values of axial force N varied between
0N and 2.0 × 1011N. The values of the shear modulus G0 are varied between 0N/m3 and 4 × 108N/m3

and the values of the rotatory inertia correction factor r0 varied between 0N/m3 and 5.5 × 105N/m3.
Figure 1 displays the transverse displacement response of a simply supported uniform beam under

the action of harmonic forces traveling at constant velocity for the various values of axial force N and for
fixed values of subgrade moduli F0 = 40000 and shear modulus G0 = 30000 and rotatory inertia r0 = 0.5.
The figures show that as N increases, the response amplitude of the uniform beam decreases. For various
traveling time t, the displacement response of the beam for various values of subgrade moduli F0 and
for fixed values of axial force N = 20000, shear modulus G0 = 30000 and r0 = 0.5 are shown in Figure
2. It is observed that the higher the values of subgrade moduli F0 the smaller the response amplitude of
the vibrating beam. Figure 3 displays the deflection profile of the simply supported uniform beam under
harmonic forces traveling at constant velocity for various values of shear modulus G0 and fixed values of
axial force N = 20000, subgrade moduli F0 = 40000 and r0 = 0.5. It is seen from the figure that as the
values of the shear modulus increases the deflection of the beam decreases significantly. The response
of the elastic beam to the traveling harmonic forces for various values of the load position coordinate x
and for fixed values of other parameters is displayed in Figure 4. It is deduced from the figure that the
dynamic deflection at the mid-span of the beam is very large compare to other load positions. Figure
5 displays the deflection profile of the simply supported uniform beams subjected to forces traveling at
constant velocity for various values of rotatory inertial correction factor r0 and fixed values of axial force
N = 20000, subgrade moduli F0 = 40000 and shear modulus G0 = 30000. The figure clearly shows that as
the value of the rotatory inertia r0 increases the deflection of the simply supported uniform beam under
the action of moving forces traveling at constant velocity decreases.

Figures 6 and 7 depict the response amplitude of a simply supported uniform beam under the action
of harmonic forces traveling at constant velocity for various values of external and internal damping Dd
and Di and for fixed values of axial force N = 20000, subgrade moduli F0 = 40000 and shear modulus
G0 = 40000. The figures show that higher values of these parameters reduce the deflection of the beam
considerably. For various values of circular frequency ω and for fixed values of other parameters, Figure
8 depicts the deflection profile of the vibrating beam. The figure clearly shows that the higher the value of
the circular frequency the lower the deflection of the beam. The transverse response of the elastic uniform
beam to the traveling load for various load velocities is presented in Figure 9. It is shown from the figure
that the higher the speed of the traveling load the larger the deflection of the structural member.

6. Concluding remarks

The problem of the response of elastic beam carrying traveling variable magnitude load is investigated
in this study. Solution procedure, involving assumed mode method and integral transform method is
developed to obtain exact solution to the fourth order partial differential equation describing the motion
of the beam-load system. Various results in plotted curves show that, the presence of some vital structural
parameters such as the axial force N, rotatory inertia correction factor r0, the foundation modulus F0 and
the shear modulus G0 significantly enhances the stability of the beam when under the actions of the fast
traveling load. Conditions under which the beam-load system will experience resonance phenomenon
are also established. The speeds at which this may occur are also established.
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Figure 1: Transverse displacement response of
a simply supported structural members resting
on elastic foundation and under the actions of
uniform partially distributed forces for various
values of axial force N and for fixed values of
F0 = 40000,G0 = 30000.

Figure 2: Transverse displacement response of
a simply supported structural members resting
on elastic foundation and under the actions of
uniform partially distributed forces for various
values of axial force K0 and for fixed values of
F0 = 40000,G0 = 30000.

Figure 3: Transverse displacement response of
a simply supported structural members resting
on elastic foundation and under the actions of
uniform partially distributed forces for various
values of axial force G0 and for fixed values of
F0 = 40000,K0 = 30000.

Figure 4: Response Amplitude of a simply sup-
ported structural members resting on elastic
foundation and under the actions of uniform
partially distributed forces for various values
of the load position and for fixed values of
G0 = 30000, F0 = 40000 and N = 20000.
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Figure 5: Response Amplitude of a simply sup-
ported structural members resting on elastic
foundation and under the actions of uniform
partially distributed forces for various values
of the rotatory inertial r0 and for fixed values
of G0 = 30000, F0 = 40000 and N = 20000.

Figure 6: Response of a simply supported struc-
tural members resting on elastic foundation to
uniform partially distributed forces for various
values of external damping De and for fixed
values of G0 = 30000, F0 = 40000 and N =
20000.

Figure 7: Response of a simply supported struc-
tural members resting on elastic foundation to
uniform partially distributed forces for various
values of internal dampingDi and for fixed val-
ues of G0 = 30000, F0 = 40000 and N = 20000.

Figure 8: Response Amplitude of a simply sup-
ported structural members resting on elastic
foundation and under the actions of uniform
partially distributed forces for various values of
the load circular fequency ω and for fixed val-
ues of G0 = 30000, F0 = 40000 and N = 20000.
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Figure 9: Response Amplitude of a simply supported structural members resting on elastic foundation
and under the actions of uniform partially distributed forces for various values of the load velocity and
for fixed values of G0 = 30000, F0 = 40000 and N = 20000.
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