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Abstract

Diophantine n-tuple where n=3 is called as a Diophantine triple. It means that Diophantine triple is a set of three positive
integers satisfying special condition. For example, {a,b, c} is called a D(k)-Diophantine triple if multiplying of any two different
of them plus k is a perfect square integer where k is an integer.

In this work, we take in consideration some kind of regular D(±33)-Diophantine triples. We demonstrate that such sets
can not be extendible to D(±33)-Diophantine quadruple by using algebraic methods such as classical Pell equations solutions,
solutions of ux2 + vy2 = w Diophantine equations where u, v,w ∈ Z, factorization in the set of integers, and so on. Besides, we
obtain some notable characteristic properties for such sets.
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1. Introduction

Number theory is one of the most significant fields of mathematics, especially, primes, prime fac-
torization and diophantine equations have a great importance in number theory. A set of m distinct
positive integers {δ1, δ2, . . . , δm} is called a Diophantine m-tuple with k and represented as D(k) or Pk if
δiδj+ k(i 6= j, i, j = 1, 2, ,m) is a perfect square integer. Although the topic of Diophantine m-tuple is very
ancient problem, still many authors have been working on it with different techniques.

Bashmakova [2] gave the definition of Diophantine m-tuple as the statement: If we choose k=1 in the
above mentioned definition (Diophantine m-tuple with k), we get the set of m positive integers which is
called a Diophantine m-tuple while the product of any two of its distinct elements increased by 1 is a
perfect square integer.

Baker and Davenport [1] considered the general solutions of each separated equations 3x2 − 2 = y2

and 8x2 − 7 = z2 by using algebraic number theory. Brown [4] proved some general results for Pk
while k = 2(mod 4) and demonstrated that the P(−1) set {1, 2, 5} can not be extendable. The book [6]
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Ö. Özer, Z. C. Sahin, Math. Nat. Sci., 3 (2018), 29–38 30

written by Dickson, has many crucial results on number theory and group theory. Deshpande [5] created
Diophantine triples considering a recurrence relation in the terms of a special sequence. Dujella and
Jurasic [7] defined the some types of regular Diophantine m-tuples and obtained significant results for
them.

Fermat [8] worked on the problem over integers considering the quadruple set {1, 3, 8, 120}. Gopalan et
al. ([12–14]) constructed different types of interesting triple sets by creating new Dio triple set definition.
Also, the author Gopalan and Özer [15] prepared a book on the varied types of Pell equations. Kedlaya
[16] determined a new elementary method to solve special systems of Diophantine equation Özer [19, 22]
proved some varied types of Diophantine triples using different algebraic methods.

Readers can get many significant and valuable information on number theory in the lecture notes of
Goldmakher [11], Kurur and Saptharishi [17], and the books of Mollin [18] and Roberts [23]. Besides, one
may refer [3, 9, 10] for an extensive review of various problems on Diophantine m-tuples.

In this paper, we consider several types of D(±33)-Diophantine triples. Firstly, we demonstrate
that they are regular Diophantine triples. Secondly, we prove that they can not extendable to D(±33)-
Diophantine quadruples. Lastly, we give some results on the characterization of the elements of D(±33)-
Diophantine triples using algebraic structures in algebraic and elementary number theory.

2. Preliminaries

Definition 2.1 ([11, Quadratic residue]). Let p be an odd prime, α ≡ 0(mod p). We say that α is a quadratic
residue mod p if α is a square mod p (it is a quadratic non-residue otherwise).

Lemma 2.2 ([11]). Let α ≡ 0(mod p). Then α is a quadratic residue mod p if and only if α(p−1)/2 ≡ 1(mod p).

Definition 2.3 ([11, Legendre symbol]). Legendre symbol introduces the following notation for prime p:

(α/p) =


0, if p/α,
1, if x2 = a(mod p) has a nonzero solution,
−1, if x2 ≡ a(mod p)has no solution.

(2.1)

Lemma 2.4. Let ( ··) be Legendre symbol and p is prime. Then, followings are satisfied.

(
−1
p

) =

{
1, if p ≡ 1 (mod 4),
−1, if p ≡ −1 (mod 4), (2.2)

(
3
p
) =

{
1, if p ≡ ±1 (mod 12),
−1, if p ≡ ±5 (mod 12), (2.3)

(
2
p
) =

{
1, if p ≡ ±1 (mod 8),
−1, if p ≡ ±3 (mod 8), (2.4)

(
5
p
) =

{
1, if p ≡ ±1 (mod 5),
−1, if p ≡ ±2 (mod 5). (2.5)

Definition 2.5 ([11, Jacobi symbol]). It is convenient to extend the Legendre symbol (αp ) to a symbol ( αm),
where m is an arbitrary odd integer; this generalization is called the Jacobi symbol. Whenever m is an
odd prime, we take ( αm) to be the Legendre symbol. We now extend this by multiplicativity to all positive
odd integers m, i.e., if m = ps1

1 · · ·p
sk
k where the pi are odd primes, set

(
α

m
) = (

α

p1
)s1 · · · α

pk
)sk .

As usual with empty products, we set (α1 ) = 1.
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Theorem 2.6 ([17, Reciprocity theorem]). If p 6= q are odd primes, then

(
p

q
)(
p

q
) = (−1)

p−1
2
q−1

2 =

{
1, if p or q ≡ ±1(mod 4),
−1, otherwise. (2.6)

Theorem 2.7 ([17, Quadratic reciprocity law]). If m,n are odd numbers such that (m,n) = 1, then

(
2
n
) = (−1)

n2−1
8 ,

(
m

n
)(
n

m
) = (−1)

(m−1)
2

(n−1)
2 . (2.7)

Definition 2.8 ([7]). A D(m)-triple {u, v,w} is called regular if it satisfies the condition

(w− v− u)2 = 4(u.v+m). (2.8)

3. Theorems and results

Theorem 3.1. A set D(33) = {1, 9, 22} is regular Diophantine triple but can not be extended to D(33)-Diophantine
quadruple.

Proof. If we consider Definition 2.4 and apply (2.10) to {1, 9, 22}, it is seen that D(33) = {1, 9, 22} is a regular
Diophantine set. We suppose that {1, 9, 22} can be extended to quadruple for any positive integer β. Then,
{1, 9, 22,β} is a D(27) Diophantine set. So, there exist a,b, c integers such that;

β+ 27 = a2, (3.1)

9β+ 27 = b2, (3.2)

22β+ 27 = c2. (3.3)

By eliminating β between (3.1) and (3.2), we have

9a2 − b2 = 216. (3.4)

In (3.4), the left side can be written as difference of two squares since 9 is a perfect square, so, we have
(3a− b)(3a+ b) = 216. Factorizing 216 as finitely, we have Table 1.

Table 1: Solutions of 9a2 − b2 = 216.
Solution Class 1 solutions 1 Class 2 solutions

a ±7 ±5
b ±15 ±3

By dropping β between (3.1) and (3.3), then we have

22a2 − c2 = 567. (3.5)

Considering solution 1, substituting a2 = 49 into (3.5) we get c2 = 511 where c is not an integer solution.
In the same way, substituting another solution a2 = 25 into the (3.5), we obtain c2 = −17 which is a
contradiction. It is shown that any value of c is not integer for the solution of (3.5). So, there is no such
β ∈ Z+ and the set P+27 = {1, 9, 22} can not be extended.

Theorem 3.2. A P+27 = {1, 142, 169} set is both regular and non-extendible to P+27-Diophantine quadruple.
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Proof. We can easily see that {1, 142, 169} is a regular P+27 triple set from (2.8) in the Definition 2.8. Suppose
that there exists a positive integer d such that {1, 142, 169,d} is a P+27 set. Then the following equations
have integral solutions x,y, z in the set of integers.

d+ 27 = u2, (3.6)

142d+ 27 = v2, (3.7)

169d+ 27 = w2. (3.8)

From (3.6) and (3.8), we obtain

169u2 −w2 = 4536. (3.9)

By factorizing the left side of (3.9), we have

(13u−w)(13u+w) = 4536. (3.10)

If we search the solutions of the (3.10), we get Table 2.

Table 2: Solutions of 169u2 −w2 = 4536.
Solution Class 1 solutions Class 2 solutions

(u,w) (±15,±183) (±13,±155)

From (3.6) and (3.7), we have

142u2 − v2 = 3807. (3.11)

If we substituting u2 = 225 or u2 = 169 into the (3.11), we obtain v2 = 28143 or v2 = 20191 which they are
not integer solutions of (3.11) in return. Hence, P+27 = {1, 142, 169} is non-extendible to P+27-Diophantine
quadruple.

Theorem 3.3. A P+27 = {1, 169, 198} set is not only regular triple but also non-extendible.

Proof. Let consider the set {1, 169, 198}. By applying (2.8) condition into the elements of the set, it is seen
that P+27 = {1, 169, 198} is a regular Diophantine triple. Assume that there exists a positive integer V such
that {1, 169, 198,V} is a P27 quadruple. Then there are x,y, z integers such that

V+ 27 = x2, (3.12)

169V+ 27 = y2, (3.13)

198V+ 27 = z2. (3.14)

By dropping V between (3.12) and (3.13), we obtain

169x2 − y2 = 4536, (3.15)

and from (3.12) and (3.14) we get

198x2 − z2 = 5319. (3.16)

In (3.15), if we use factorization of integers, we write left side as (13x−y)(13x+y) = 4536. Also, 4536 can
be factorized as finitely. So, integer solutions of (3.15) are as Table 2 for (x,y). If we substitute x2 = 225 or
x2 = 169 into the (3.16), we have z2 = 39231 or z2 = 28143, where they are not integer solutions of (3.16),
respectively.

Thus, there is no such V ∈ Z+ and the {1, 169, 198} cannot be extended to P27 quadruple.
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Remark 3.4. There are many different types of regular P+27-Diophantine triples such as {2, 11, 27}, {2, 47, 71},
{3, 18, 39}, {3, 66, 99}, {6, 9, 33}, {9, 13, 46}, {11, 18, 59}, and so on. In here, we just prove some of them by
applying factorization method in the set of integers.

Theorem 3.5. There isn’t any set P+27 including elements divided by 4, 5, 7, or 17.

Proof.

(a) We suppose that u is an element of set P+27. If 4α is also an element of set P+27 for α ∈ Z, then we
have

4αu+ 27 = A2 (3.17)

must be satisfied for some integer A. Applying (mod 4) on the both sides of (3.17), we obtain following
inequality

A2 ≡ 3(mod 4). (3.18)

If A is odd integer then we get A2 ≡ 1(mod 4) and also A2 ≡ 0(mod 4) for even integer A. So, (3.18) can
not solvability. This is a contradiction. Therefore, 4α can not be an element of P+27 for any α ∈ Z.

(b) We suppose that v and 5β, (β ∈ Z) are elements of the set P+27, then

5βv+ 27 = B2 (3.19)

is satisfied for integer B. Applying (mod 5) to (3.19), we get

B2 ≡ 2(mod 5) (3.20)

has solutions if and only if Legendre symbol is ( 2
5) = 1. If we consider Lemma 2.4 and applying (2.4), we

obtain ( 2
5) = −1 which implies that (3.20) has no solution. This is a contradiction. Consequently, there is

no set P+27 involving elements with 5.

(c) In a similar way of (a) or (b), assume that w is an element of set P+27. If 7γ, (γ ∈ Z) is also an element
of set P+27, then

7γw+ 27 = C2

is obtained for integer C. If we apply (mod 7), we have

C2 ≡ −1(mod 7). (3.21)

Using (2.2) from Lemma 2.4, we have

(
−1
7
) = (−1)

7−1
2 = −1.

This shows that equation (3.21) is unsolvable. Hence, 7γ can not be an element of P+27 for γ ∈ Z.

(d) In the same manner, suppose that r and 17θ, (θ ∈ Z) are elements of set P+27. Then

17θr+ 27 = D2 (3.22)

has to get solution for integer D. Applying (mod 17) to (3.22), we get

D2 ≡ 10(mod 17). (3.23)

Using (2.7) of Theorem 2.7, then we obtain

(
10
17

) = (
2

17
)(

5
17

). (3.24)

Applying (2.4) and (2.5) of Lemma 2.4 into the (3.24), we have ( 2
17) = +1 and ( 5

17) = −1. These imply
that ( 10

17) = −1 and the equation (3.23) isnt solvable. Therefore, 17θ can not be an element of P+27 for
θ ∈ Z.
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Theorem 3.6. A D(−27) = {1, 31, 36} set can not be extended to D(−27) quadruple but it is regular D(−27)
Diophantine triple.

Proof. The set {1, 31, 36} has the property of D(−27) Diophantine set. From (2.8) of Definition 2.8, it is
clear that {1, 31, 36} is a regular D(−27) Diophantine triple. Let show that the set is non-extendible. Let µ
be any other positive integer in {1, 31, 36,µ}. Then following equations hold for some X, Y,Z integers.

µ− 27 = X2, (3.25)

31µ− 27 = Y2, (3.26)

36µ− 27 = Z2. (3.27)

Elimination of µ between (3.25) and (3.27) as well as between (3.25) and (3.26), we obtain following
equations, respectively.

Z2 − 362 = 945, (3.28)

Y2 − 31X2 = 810. (3.29)

By using factorization, solutions of (3.28) are obtained as Table 3. Putting solutions from Table 3 into the

Table 3: Solutions of Z2 − 36X2 = 945.
Solutions Class 1 solutions Class 1 solutions Class 2 solutions Class 3 solutions

(X,Z) (±26,±159) (±8,±57) (±4,±39) (±2,±33)

(3.29), we have Y2 = 21766, Y2 = 2794, Y2 = 1306 or Y2 = 934 for X2 = 676, X2 = 64, X2 = 16 or X2 = 4,
respectively. These imply that they (values of Y) are not integer solution of (3.29). Thus, there is no such
µ ∈ Z+ and the D(−27) = {1, 31, 36} set is non-extendible to Diophantine D(−33) quadruple.

Theorem 3.7. A D(−33) = {1, 36, 43} is regular triple set however it can not be extended.

Proof. Diophantine triple D(−33) = {1, 36, 43} is regular triple set since it satisfies (2.8) condition of Defini-
tion 2.8. Assume that {1, 36, 43,ϕ} is a D(−33) Diophantine quadruple. So, there are A,B,C integers such
that

ϕ− 27 = A2, (3.30)

36ϕ− 27 = B2, (3.31)

43ϕ− 27 = C2. (3.32)

Dropping ϕ between (3.30) and (3.31), we obtain

B2 − 36A2 = 945 (3.33)

and similarly from (3.30) and (3.32), we have

C2 − 43A2 = 1134. (3.34)

The Table 3 gives the solutions of (3.33) if we take (A,B) instead of (X,Z) in such table. Putting values of
A2 from Table 3 into the (3.34), respectively, we obtain C2 = 30202, C2 = 3886, C2 = 1822, or C2 = 1306. It
shows that C is not integer yields (3.34). So, there is no positive ϕ integer and the D(−33) = {1, 36, 43} is
not extendible to D(−33) Diophantine quadruple.

Theorem 3.8. A Diophantine triple P(−33) = {2, 18, 26} is regular and non-extendible to D(−33) Diophantine
quadruple.
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Proof. From (2.8) in Definition 2.8, it is clear that {2, 18, 26} is regular Diophantine triple. Assume that there
exists a positive integer k such that {2, 18, 26, k} is a P(−33) quadruple. Then there exist x,y, z integers such
that

2k− 27 = x2, (3.35)

18k− 27 = y2, (3.36)

26k− 27 = z2. (3.37)

Dropping k from (3.35) and (3.36), we obtain y2 − 9x2 = 216. Using factorization, we have the solutions of
y2 − 9x2 = 216 as Table 4.

Table 4: Solutions of y2 − 9x2 = 216.
Solutions Class 1 solutions Class 2 solutions

(x,y) (±5,±21) (±1,±15)

From (3.35) and (3.37), we get

z2 − 13x2 = 324. (3.38)

Substituting solutions x2 = 25 or x2 = 1 into the (3.38), we have z2 = 649 or z2 = 337 which are not integer
solutions of (3.38), respectively. Thus, there is no such k ∈ Z+ and the P−33 = {2, 18, 26} set can not be
extended to P−33 Diophantine quadruple.

Theorem 3.9. A P−27 = {3, 9, 12} set can not be extended to P−33 Diophantine quadruple however it is regular
P−27-Diophantine triple.

Proof. It is trivial that {3, 9, 12} triple is regular from (2.8). Let us determine whether or not there is any
other positive integer in this set. Assume that {3, 9, 12,d} is P−27 Diophantine quadruple. Then following
equations are satisfied for some a,b, c integers.

3d− 27 = a2, (3.39)

9d− 27 = b2, (3.40)

12d− 27 = c2. (3.41)

Elimination of d between (3.39) and (3.41) as well as (3.39) and (3.40), we have

c2 − 4a2 = 81, (3.42)

b2 − 3a2 = 54. (3.43)

Solutions of (3.42) can be given as Table 5.

Table 5: Solutions of c2 − 4a2 = 81.
Solutions Class 1 solutions Class 2 solutions Class 3 solutions

(a,c) (±20,±41) (±6,±15) (±0,±9)

Putting solutions into the (3.43), we get b2 = 1254, b2 = 162 or b2 = 54 which they are not integer
solution of (3.43). Thus, there is no such d ∈ Z+ and the P−27 = {3, 9, 12} Diophantine triple isnt extendible
to P−27 quadruple.

Theorem 3.10. Sets P−27 = {4, 7, 9} and P−27 = {4, 9, 19} are regular Diophantine triple but can not be extended
to P−27-Diophantine quadruple.
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Proof. Both of the P−27 sets in the Theorem 3.10 are regular since (2.8) condition is satisfied. Assume that
{4, 7, 9,α} is a P−27 set. There are X, Y,Z integers such that,

4α− 27 = X2, (3.44)

7α− 27 = Y2, (3.45)

9α− 27 = Z2. (3.46)

Eliminating α between (3.44) and (3.46), we obtain

−9X2 + 4Z2 = 135 (3.47)

and similarly, dropping α between (3.44) and (3.45) we have

−7X2 + 4Y2 = 81. (3.48)

By (3.47), we have (2Z− 3X)(2Z+ 3X) = 135 and solutions are found as (X,Z) = (±7,±12) or (X,Z) =
(±1,±6). Substituting solutions X2 = 49 or X2 = 1 into the (3.48), we get Y2 = 106 or Y2 = 22 in return. It
proves that Y is not integer yields (3.48). So, there is no α integer and the P−27 = {4, 7, 9} is non-extendible
to quadruple. In a similar way, there are x,y, z integers such that

4β− 27 = x2, (3.49)

9β− 27 = y2, (3.50)

19β− 27 = z2 (3.51)

for P−27 = {4, 9, 19,β} Diophantine quadruple. Dropping β between (3.49) and (3.50) we get the following
equation same as solutions of (3.47) are obtained,

(x,y) = (±7,±12), (x,y) = (±1,±6).

Eliminating β between (3.49) and (3.51), we get 4z2 − 19x2 = 405. Substituting solutions (x,y) = (±7,±12),
(x,y) = (±1,±6) into the 4z2 − 19x2 = 405 then we have z2 = 334 or z2 = 106 such that z is not integer.
Hence, there is no such positive β integer and the P−27 = {4, 9, 19} set is non-extendible to Diophantine
P−27 quadruple.

Theorem 3.11. There isn’t any set P−27 including R elements satisfying any of following conditions:
(i) R ∈ Z, R ≡ 0 (mod 5);

(ii) R ∈ Z,R ≡ 0 (mod 8);
(iii) R ∈ Z,R ≡ 0 (mod 11);
(iv) R ∈ Z,R ≡ 0 (mod 17).

Proof.

(i) If R = 5u and t are elements of set P−27 for u ∈ Z, then we obtain

5ut− 27 = X2. (3.52)

Applying (mod 5) on both sides of the (3.52), we have

X2 ≡ 3(mod 5).

Using (2.6) of Theorem 2.6, we get

(
3
5
)(

5
3
) = (−1)

3−1
2

5−1
2 = −1.

And ( 5
3) = ( 2

3) = −1 from (2.4) in Lemma 2.4. So, we obtain

(
3
5
) = −1.

This is a contradiction. So, there is no P−27 set containing any elements such that R ∈ Z, R ≡ 0 (mod 5).
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(ii) Assume that s and 8v, (v ∈ Z) are elements of set P−27, then we have

8vs− 27 = Y2

for integer Y. Also, Y2 ≡ 5 (mod 8) is satisfied. By Lemma 2.1 and considering residue classes (mod 8),
we get Y2 ≡ 0, 1, 4(mod 8). So, 5 is non-quadratic residue (mod 8) and it is a contradiction. Hence, there
isnt any set P−27 including any element satisfying R ∈ Z,R ≡ 0(mod 8).

(iii) If m and R ∈ Z, R ≡ 0 (mod 11) are elements of set P−27,

11tm− 27 = Z2 (3.53)

satisfies for integer Z. Applying (modulo 11), we get

Z2 ≡ 6(mod 11).

Considering property of Legendre symbol from Definition 2.3, we have

(
6

11
) = (

2
11

)(
3
11

).

From (2.4) and (2.3), we obtain ( 2
11) = −1 and ( 3

11) = +1. So, we get ( 6
11) = −1. The equation (3.53) is

not solvable. Thus, R ∈ Z, R ≡ 0 (mod 11) can not be an element of P−27.

(iv) Assume that t is an element of set P−27, if R ∈ Z, R ≡ 0(mod 17) is also an element of set P−27, then

17tn− 27 = T 2 (3.54)

for integer T . If we apply (mod 17) on the both sides of (3.54), we get

T 2 ≡ 7(mod 17).

Using Theorem 2.6, we have

(
7
17

)(
17
7
) = (−1)(

7−1
2 )( 17−1

2 ) = 1.

From the Legendre symbol’s property, we can write ( 17
7 ) = ( 3

7). Using (2.3) in Lemma 2.4, we obtain that
( 3

7) = −1. So, we have

(
7

17
) = −1

This shows that there is no integer T satisfying (3.54). It is a contradiction. Therefore, there is no set P−27
including any elements such that R ∈ Z, R ≡ 0(mod 17).

Remark 3.12. Using similar technique, readers also can prove that {1, 36, 91}, {1, 171, 196}, {3, 12, 21}, {4, 27, 49},
{4, 49, 79}, {6, 18, 42}, {7, 9, 28}, and so on. They are regular D(−33) Diophantine triples although they aren’t
extendible D(−33) Diophantine quadruple.
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