Online: ISSN 2600-7665

Mathematics in Natural Science

An International Journal

Journal Homepage: www.isr-publications.com/mns

On some particular regular Diophantine 3-tuples

Check for updates

Ö. Özer^{a,*}, Z. C. Sahin^b

^aDepartment of Mathematics, Faculty of Science and Arts, Kirklareli University, Kirklareli, 39100, Turkey. ^bDepartment of Mathematics, Faculty of Science and Arts, Sŭleyman Demirel University, Isparta, Turkey.

Abstract

Diophantine n-tuple where n=3 is called as a Diophantine triple. It means that Diophantine triple is a set of three positive integers satisfying special condition. For example, $\{a, b, c\}$ is called a D(k)-Diophantine triple if multiplying of any two different of them plus k is a perfect square integer where k is an integer.

In this work, we take in consideration some kind of regular $D(\pm 3^3)$ -Diophantine triples. We demonstrate that such sets can not be extendible to $D(\pm 3^3)$ -Diophantine quadruple by using algebraic methods such as classical Pell equations solutions, solutions of $ux^2 + vy^2 = w$ Diophantine equations where $u, v, w \in \mathbb{Z}$, factorization in the set of integers, and so on. Besides, we obtain some notable characteristic properties for such sets.

Keywords: Diophantine Triple, Pell equations, Diophantine equations, modular arithmetic, reciprocity theorem, Legendre symbol.

2010 MSC: 11Dxx, 11C08, 11G99.

©2018 All rights reserved.

1. Introduction

Number theory is one of the most significant fields of mathematics, especially, primes, prime factorization and diophantine equations have a great importance in number theory. A set of m distinct positive integers $\{\delta_1, \delta_2, \ldots, \delta_m\}$ is called a Diophantine m-tuple with k and represented as D(k) or P_k if $\delta_i \delta_j + k(i \neq j, i, j = 1, 2, m)$ is a perfect square integer. Although the topic of Diophantine m-tuple is very ancient problem, still many authors have been working on it with different techniques.

Bashmakova [2] gave the definition of Diophantine m-tuple as the statement: If we choose k=1 in the above mentioned definition (Diophantine m-tuple with k), we get the set of m positive integers which is called a Diophantine m-tuple while the product of any two of its distinct elements increased by 1 is a perfect square integer.

Baker and Davenport [1] considered the general solutions of each separated equations $3x^2 - 2 = y^2$ and $8x^2 - 7 = z^2$ by using algebraic number theory. Brown [4] proved some general results for P_k while $k = 2 \pmod{4}$ and demonstrated that the P₍₋₁₎ set {1,2,5} can not be extendable. The book [6]

*Corresponding author

Email address: ozenozer39@gmail.com (Ö. Özer)

doi: 10.22436/mns.03.01.04

Received: 2018-11-14 Revised: 2019-01-03 Accepted: 2019-01-30

written by Dickson, has many crucial results on number theory and group theory. Deshpande [5] created Diophantine triples considering a recurrence relation in the terms of a special sequence. Dujella and Jurasic [7] defined the some types of regular Diophantine m-tuples and obtained significant results for them.

Fermat [8] worked on the problem over integers considering the quadruple set {1, 3, 8, 120}. Gopalan et al. ([12–14]) constructed different types of interesting triple sets by creating new Dio triple set definition. Also, the author Gopalan and Özer [15] prepared a book on the varied types of Pell equations. Kedlaya [16] determined a new elementary method to solve special systems of Diophantine equation Özer [19, 22] proved some varied types of Diophantine triples using different algebraic methods.

Readers can get many significant and valuable information on number theory in the lecture notes of Goldmakher [11], Kurur and Saptharishi [17], and the books of Mollin [18] and Roberts [23]. Besides, one may refer [3, 9, 10] for an extensive review of various problems on Diophantine m-tuples.

In this paper, we consider several types of $D(\pm 3^3)$ -Diophantine triples. Firstly, we demonstrate that they are regular Diophantine triples. Secondly, we prove that they can not extendable to $D(\pm 3^3)$ -Diophantine quadruples. Lastly, we give some results on the characterization of the elements of $D(\pm 3^3)$ -Diophantine triples using algebraic structures in algebraic and elementary number theory.

2. Preliminaries

Definition 2.1 ([11, Quadratic residue]). Let p be an odd prime, $\alpha \equiv 0 \pmod{p}$. We say that α is a quadratic residue mod p if α is a square mod p (it is a quadratic non-residue otherwise).

Lemma 2.2 ([11]). Let $\alpha \equiv 0 \pmod{p}$. Then α is a quadratic residue mod p if and only if $\alpha^{(p-1)/2} \equiv 1 \pmod{p}$.

Definition 2.3 ([11, Legendre symbol]). Legendre symbol introduces the following notation for prime p:

$$(\alpha/p) = \begin{cases} 0, & \text{if } p/\alpha, \\ 1, & \text{if } x^2 = a \pmod{p} \text{ has a nonzero solution,} \\ -1, & \text{if } x^2 \equiv a \pmod{p} \text{ has no solution.} \end{cases}$$
(2.1)

Lemma 2.4. Let (:) be Legendre symbol and p is prime. Then, followings are satisfied.

(

 $\left(\frac{-1}{p}\right) = \begin{cases} 1, & \text{if } p \equiv 1 \pmod{4}, \\ -1, & \text{if } p \equiv -1 \pmod{4}, \end{cases}$ (2.2)

$$(\frac{3}{p}) = \begin{cases} 1, & \text{if } p \equiv \pm 1 \pmod{12}, \\ -1, & \text{if } p \equiv \pm 5 \pmod{12}, \end{cases}$$
(2.3)

$$\frac{2}{p}) = \begin{cases} 1, & \text{if } p \equiv \pm 1 \pmod{8}, \\ -1, & \text{if } p \equiv \pm 3 \pmod{8}, \end{cases}$$
(2.4)

$$(\frac{5}{p}) = \begin{cases} 1, & \text{if } p \equiv \pm 1 \pmod{5}, \\ -1, & \text{if } p \equiv \pm 2 \pmod{5}. \end{cases}$$
(2.5)

Definition 2.5 ([11, Jacobi symbol]). It is convenient to extend the Legendre symbol $(\frac{\alpha}{p})$ to a symbol $(\frac{\alpha}{m})$, where m is an arbitrary odd integer; this generalization is called the Jacobi symbol. Whenever m is an odd prime, we take $(\frac{\alpha}{m})$ to be the Legendre symbol. We now extend this by multiplicativity to all positive odd integers m, i.e., if $m = p_1^{s_1} \cdots p_k^{s_k}$ where the p_i are odd primes, set

$$(\frac{\alpha}{m}) = (\frac{\alpha}{p_1})^{s_1} \cdots \frac{\alpha}{p_k})^{s_k}$$

As usual with empty products, we set $\left(\frac{\alpha}{1}\right) = 1$.

Theorem 2.6 ([17, Reciprocity theorem]). *If* $p \neq q$ *are odd primes, then*

$$(\frac{p}{q})(\frac{p}{q}) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} = \begin{cases} 1, & \text{if } p \text{ or } q \equiv \pm 1 \pmod{4}, \\ -1, & \text{otherwise.} \end{cases}$$
(2.6)

Theorem 2.7 ([17, Quadratic reciprocity law]). If m, n are odd numbers such that (m, n) = 1, then

$$(\frac{2}{n}) = (-1)^{\frac{n^2 - 1}{8}},$$

$$(\frac{m}{n})(\frac{n}{m}) = (-1)^{\frac{(m-1)}{2}\frac{(n-1)}{2}}.$$

$$(2.7)$$

Definition 2.8 ([7]). A D(m)-triple $\{u, v, w\}$ is called regular if it satisfies the condition

$$(w - v - u)^2 = 4(u.v + m).$$
 (2.8)

3. Theorems and results

Theorem 3.1. A set $D(3^3) = \{1, 9, 22\}$ is regular Diophantine triple but can not be extended to $D(3^3)$ -Diophantine quadruple.

Proof. If we consider Definition 2.4 and apply (2.10) to $\{1, 9, 22\}$, it is seen that $D(3^3) = \{1, 9, 22\}$ is a regular Diophantine set. We suppose that $\{1, 9, 22\}$ can be extended to quadruple for any positive integer β . Then, $\{1, 9, 22, \beta\}$ is a D(27) Diophantine set. So, there exist a, b, c integers such that;

$$\beta + 27 = a^2, \tag{3.1}$$

$$9\beta + 27 = b^2,$$
 (3.2)

$$22\beta + 27 = c^2. (3.3)$$

By eliminating β between (3.1) and (3.2), we have

$$9a^2 - b^2 = 216. (3.4)$$

In (3.4), the left side can be written as difference of two squares since 9 is a perfect square, so, we have (3a - b)(3a + b) = 216. Factorizing 216 as finitely, we have Table 1.

Table 1: Solutions of $9a^2 - b^2 = 216$.SolutionClass 1 solutions 1Class 2 solutionsa ± 7 ± 5 b ± 15 ± 3

By dropping β between (3.1) and (3.3), then we have

$$22a^2 - c^2 = 567. \tag{3.5}$$

Considering solution 1, substituting $a^2 = 49$ into (3.5) we get $c^2 = 511$ where c is not an integer solution. In the same way, substituting another solution $a^2 = 25$ into the (3.5), we obtain $c^2 = -17$ which is a contradiction. It is shown that any value of c is not integer for the solution of (3.5). So, there is no such $\beta \in \mathbb{Z}^+$ and the set $P_{+27} = \{1, 9, 22\}$ can not be extended.

Theorem 3.2. A $P_{+27} = \{1, 142, 169\}$ set is both regular and non-extendible to P_{+27} -Diophantine quadruple.

Proof. We can easily see that $\{1, 142, 169\}$ is a regular P₊₂₇ triple set from (2.8) in the Definition 2.8. Suppose that there exists a positive integer d such that $\{1, 142, 169, d\}$ is a P₊₂₇ set. Then the following equations have integral solutions x, y, z in the set of integers.

$$d + 27 = u^2$$
, (3.6)

$$142d + 27 = v^2, \tag{3.7}$$

$$169d + 27 = w^2. \tag{3.8}$$

From (3.6) and (3.8), we obtain

$$169u^2 - w^2 = 4536. \tag{3.9}$$

By factorizing the left side of (3.9), we have

$$(13u - w)(13u + w) = 4536. \tag{3.10}$$

If we search the solutions of the (3.10), we get Table 2.

Table 2: Solutions of $169u^2 - w^2 = 4536$.				
Solution	Class 1 solutions	Class 2 solutions		
(u,w)	$(\pm 15, \pm 183)$	$(\pm 13, \pm 155)$		

From (3.6) and (3.7), we have

$$142u^2 - v^2 = 3807. \tag{3.11}$$

If we substituting $u^2 = 225$ or $u^2 = 169$ into the (3.11), we obtain $v^2 = 28143$ or $v^2 = 20191$ which they are not integer solutions of (3.11) in return. Hence, $P_{+27} = \{1, 142, 169\}$ is non-extendible to P_{+27} -Diophantine quadruple.

Theorem 3.3. A $P_{+27} = \{1, 169, 198\}$ set is not only regular triple but also non-extendible.

Proof. Let consider the set {1, 169, 198}. By applying (2.8) condition into the elements of the set, it is seen that $P_{+27} = \{1, 169, 198\}$ is a regular Diophantine triple. Assume that there exists a positive integer \mathcal{V} such that $\{1, 169, 198, \mathcal{V}\}$ is a P_{27} quadruple. Then there are x, y, z integers such that

$$\mathcal{V} + 27 = x^2, \tag{3.12}$$

$$169\mathcal{V} + 27 = y^2, \tag{3.13}$$

$$198\mathcal{V} + 27 = z^2. \tag{3.14}$$

By dropping \mathcal{V} between (3.12) and (3.13), we obtain

$$169x^2 - y^2 = 4536, \tag{3.15}$$

and from (3.12) and (3.14) we get

$$198x^2 - z^2 = 5319. \tag{3.16}$$

In (3.15), if we use factorization of integers, we write left side as (13x - y)(13x + y) = 4536. Also, 4536 can be factorized as finitely. So, integer solutions of (3.15) are as Table 2 for (x, y). If we substitute $x^2 = 225$ or $x^2 = 169$ into the (3.16), we have $z^2 = 39231$ or $z^2 = 28143$, where they are not integer solutions of (3.16), respectively.

Thus, there is no such $\mathcal{V} \in \mathbb{Z}^+$ and the {1,169,198} cannot be extended to P₂₇ quadruple.

Remark 3.4. There are many different types of regular P_{+27} -Diophantine triples such as $\{2, 11, 27\}$, $\{2, 47, 71\}$, $\{3, 18, 39\}$, $\{3, 66, 99\}$, $\{6, 9, 33\}$, $\{9, 13, 46\}$, $\{11, 18, 59\}$, and so on. In here, we just prove some of them by applying factorization method in the set of integers.

Theorem 3.5. There isn't any set P_{+27} including elements divided by 4, 5, 7, or 17.

Proof.

(a) We suppose that u is an element of set P_{+27} . If 4α is also an element of set P_{+27} for $\alpha \in \mathbb{Z}$, then we have

$$4\alpha u + 27 = A^2 \tag{3.17}$$

must be satisfied for some integer A. Applying (mod 4) on the both sides of (3.17), we obtain following inequality

$$A^2 \equiv 3 \pmod{4}. \tag{3.18}$$

If A is odd integer then we get $A^2 \equiv 1 \pmod{4}$ and also $A^2 \equiv 0 \pmod{4}$ for even integer A. So, (3.18) can not solvability. This is a contradiction. Therefore, 4α can not be an element of P_{+27} for any $\alpha \in \mathbb{Z}$.

(b) We suppose that v and 5 β , ($\beta \in Z$) are elements of the set P₊₂₇, then

$$5\beta v + 27 = B^2 \tag{3.19}$$

is satisfied for integer B. Applying (mod 5) to (3.19), we get

$$B^2 \equiv 2 \pmod{5} \tag{3.20}$$

has solutions if and only if Legendre symbol is $(\frac{2}{5}) = 1$. If we consider Lemma 2.4 and applying (2.4), we obtain $(\frac{2}{5}) = -1$ which implies that (3.20) has no solution. This is a contradiction. Consequently, there is no set P₊₂₇ involving elements with 5.

(c) In a similar way of (a) or (b), assume that w is an element of set P_{+27} . If 7γ , ($\gamma \in \mathbb{Z}$) is also an element of set P_{+27} , then

$$7\gamma w + 27 = C^2$$

is obtained for integer C. If we apply (mod 7), we have

$$C^2 \equiv -1 \pmod{7}.\tag{3.21}$$

Using (2.2) from Lemma 2.4, we have

$$\left(\frac{-1}{7}\right) = \left(-1\right)^{\frac{7-1}{2}} = -1.$$

This shows that equation (3.21) is unsolvable. Hence, 7γ can not be an element of P_{+27} for $\gamma \in \mathbb{Z}$.

(d) In the same manner, suppose that r and 17θ , $(\theta \in \mathbb{Z})$ are elements of set P_{+27} . Then

$$17\theta r + 27 = D^2$$
(3.22)

has to get solution for integer D. Applying (mod 17) to (3.22), we get

$$D^2 \equiv 10 \pmod{17}.$$
 (3.23)

Using (2.7) of Theorem 2.7, then we obtain

$$(\frac{10}{17}) = (\frac{2}{17})(\frac{5}{17}). \tag{3.24}$$

Applying (2.4) and (2.5) of Lemma 2.4 into the (3.24), we have $(\frac{2}{17}) = +1$ and $(\frac{5}{17}) = -1$. These imply that $(\frac{10}{17}) = -1$ and the equation (3.23) isnt solvable. Therefore, 17 θ can not be an element of P₊₂₇ for $\theta \in \mathbb{Z}$.

Theorem 3.6. A $D(-27) = \{1, 31, 36\}$ set can not be extended to D(-27) quadruple but it is regular D(-27) Diophantine triple.

Proof. The set {1,31,36} has the property of D(-27) Diophantine set. From (2.8) of Definition 2.8, it is clear that {1,31,36} is a regular D(-27) Diophantine triple. Let show that the set is non-extendible. Let μ be any other positive integer in {1,31,36, μ }. Then following equations hold for some X, Y, Z integers.

$$\mu - 27 = X^2, \tag{3.25}$$

$$31\mu - 27 = Y^2, \tag{3.26}$$

$$36\mu - 27 = Z^2. \tag{3.27}$$

Elimination of μ between (3.25) and (3.27) as well as between (3.25) and (3.26), we obtain following equations, respectively.

$$Z^2 - 36^2 = 945, (3.28)$$

$$Y^2 - 31X^2 = 810. (3.29)$$

By using factorization, solutions of (3.28) are obtained as Table 3. Putting solutions from Table 3 into the

Table 3: Solutions of $Z^2 - 36X^2 = 945$.						
Solutions	Class 1 solutions	Class 1 solutions	Class 2 solutions	Class 3 solutions		
(X,Z)	$(\pm 26, \pm 159)$	$(\pm 8, \pm 57)$	$(\pm 4, \pm 39)$	(±2,±33)		

(3.29), we have $Y^2 = 21766$, $Y^2 = 2794$, $Y^2 = 1306$ or $Y^2 = 934$ for $X^2 = 676$, $X^2 = 64$, $X^2 = 16$ or $X^2 = 4$, respectively. These imply that they (values of Y) are not integer solution of (3.29). Thus, there is no such $\mu \in \mathbb{Z}^+$ and the $D(-27) = \{1, 31, 36\}$ set is non-extendible to Diophantine $D(-3^3)$ quadruple.

Theorem 3.7. A $D(-3^3) = \{1, 36, 43\}$ is regular triple set however it can not be extended.

Proof. Diophantine triple $D(-3^3) = \{1, 36, 43\}$ is regular triple set since it satisfies (2.8) condition of Definition 2.8. Assume that $\{1, 36, 43, \varphi\}$ is a $D(-3^3)$ Diophantine quadruple. So, there are A, B, C integers such that

$$\varphi - 27 = A^2, \tag{3.30}$$

$$36\varphi - 27 = B^2, \tag{3.31}$$

$$43\varphi - 27 = C^2. \tag{3.32}$$

Dropping φ between (3.30) and (3.31), we obtain

$$B^2 - 36A^2 = 945 \tag{3.33}$$

and similarly from (3.30) and (3.32), we have

$$C^2 - 43A^2 = 1134. (3.34)$$

The Table 3 gives the solutions of (3.33) if we take (A, B) instead of (X, Z) in such table. Putting values of A² from Table 3 into the (3.34), respectively, we obtain C² = 30202, C² = 3886, C² = 1822, or C² = 1306. It shows that C is not integer yields (3.34). So, there is no positive φ integer and the D(-3³) = {1,36,43} is not extendible to D(-3³) Diophantine quadruple.

Theorem 3.8. A Diophantine triple $P_{(-3^3)} = \{2, 18, 26\}$ is regular and non-extendible to $D(-3^3)$ Diophantine quadruple.

Proof. From (2.8) in Definition 2.8, it is clear that $\{2, 18, 26\}$ is regular Diophantine triple. Assume that there exists a positive integer k such that $\{2, 18, 26, k\}$ is a $P_{(-3^3)}$ quadruple. Then there exist x, y, z integers such that

$$2k - 27 = x^2, (3.35)$$

$$18k - 27 = y^2, (3.36)$$

$$26k - 27 = z^2. (3.37)$$

Dropping k from (3.35) and (3.36), we obtain $y^2 - 9x^2 = 216$. Using factorization, we have the solutions of $y^2 - 9x^2 = 216$ as Table 4.

Table 4: Solutions of $y^2 - 9x^2 = 216$.					
Solutions	Class 1 solutions	Class 2 solutions			
(x,y)	$(\pm 5, \pm 21)$	$(\pm 1, \pm 15)$			

From (3.35) and (3.37), we get

$$z^2 - 13x^2 = 324. \tag{3.38}$$

Substituting solutions $x^2 = 25$ or $x^2 = 1$ into the (3.38), we have $z^2 = 649$ or $z^2 = 337$ which are not integer solutions of (3.38), respectively. Thus, there is no such $k \in \mathbb{Z}^+$ and the $P_{-3^3} = \{2, 18, 26\}$ set can not be extended to P_{-3^3} Diophantine quadruple.

Theorem 3.9. A $P_{-27} = \{3, 9, 12\}$ set can not be extended to P_{-3^3} Diophantine quadruple however it is regular P_{-27} -Diophantine triple.

Proof. It is trivial that $\{3, 9, 12\}$ triple is regular from (2.8). Let us determine whether or not there is any other positive integer in this set. Assume that $\{3, 9, 12, d\}$ is P₋₂₇ Diophantine quadruple. Then following equations are satisfied for some a, b, c integers.

$$3d - 27 = a^2$$
, (3.39)

$$9d - 27 = b^2$$
, (3.40)

$$12d - 27 = c^2. \tag{3.41}$$

Elimination of d between (3.39) and (3.41) as well as (3.39) and (3.40), we have

$$c^2 - 4a^2 = 81, (3.42)$$

$$b^2 - 3a^2 = 54. \tag{3.43}$$

Solutions of (3.42) can be given as Table 5.

Table 5: Solutions of $c^2 - 4a^2 = 81$.						
Solutions	Class 1 solutions	Class 2 solutions	Class 3 solutions			
(a,c)	$(\pm 20, \pm 41)$	$(\pm 6, \pm 15)$	$(\pm 0, \pm 9)$			

Putting solutions into the (3.43), we get $b^2 = 1254$, $b^2 = 162$ or $b^2 = 54$ which they are not integer solution of (3.43). Thus, there is no such $d \in Z^+$ and the $P_{-27} = \{3, 9, 12\}$ Diophantine triple isnt extendible to P_{-27} quadruple.

Theorem 3.10. Sets $P_{-27} = \{4, 7, 9\}$ and $P_{-27} = \{4, 9, 19\}$ are regular Diophantine triple but can not be extended to P_{-27} -Diophantine quadruple.

Proof. Both of the P₋₂₇ sets in the Theorem 3.10 are regular since (2.8) condition is satisfied. Assume that $\{4, 7, 9, \alpha\}$ is a P₋₂₇ set. There are X, Y, Z integers such that,

$$4\alpha - 27 = X^2$$
, (3.44)

$$7\alpha - 27 = Y^2$$
, (3.45)

$$9\alpha - 27 = Z^2. (3.46)$$

Eliminating α between (3.44) and (3.46), we obtain

$$-9X^2 + 4Z^2 = 135 \tag{3.47}$$

and similarly, dropping α between (3.44) and (3.45) we have

$$-7X^2 + 4Y^2 = 81. (3.48)$$

By (3.47), we have (2Z - 3X)(2Z + 3X) = 135 and solutions are found as $(X, Z) = (\pm 7, \pm 12)$ or $(X, Z) = (\pm 1, \pm 6)$. Substituting solutions $X^2 = 49$ or $X^2 = 1$ into the (3.48), we get $Y^2 = 106$ or $Y^2 = 22$ in return. It proves that Y is not integer yields (3.48). So, there is no α integer and the P₋₂₇ = {4,7,9} is non-extendible to quadruple. In a similar way, there are x, y, z integers such that

$$4\beta - 27 = x^2, \tag{3.49}$$

$$9\beta - 27 = y^2,$$
 (3.50)

$$19\beta - 27 = z^2 \tag{3.51}$$

for $P_{-27} = \{4, 9, 19, \beta\}$ Diophantine quadruple. Dropping β between (3.49) and (3.50) we get the following equation same as solutions of (3.47) are obtained,

$$(x, y) = (\pm 7, \pm 12), (x, y) = (\pm 1, \pm 6).$$

Eliminating β between (3.49) and (3.51), we get $4z^2 - 19x^2 = 405$. Substituting solutions $(x, y) = (\pm 7, \pm 12)$, $(x, y) = (\pm 1, \pm 6)$ into the $4z^2 - 19x^2 = 405$ then we have $z^2 = 334$ or $z^2 = 106$ such that *z* is not integer. Hence, there is no such positive β integer and the P₋₂₇ = {4,9,19} set is non-extendible to Diophantine P₋₂₇ quadruple.

Theorem 3.11. *There isn't any set* P₋₂₇ *including* R *elements satisfying any of following conditions:*

- $\begin{array}{ll} (i) \ R \in \mathbb{Z}, R \equiv 0 \ (mod \ 5);\\ (ii) \ R \in \mathbb{Z}, R \equiv 0 \ (mod \ 8);\\ (iii) \ R \in \mathbb{Z}, R \equiv 0 \ (mod \ 11); \end{array}$
- (iv) $R \in \mathbb{Z}, R \equiv 0 \pmod{17}$.

Proof.

(i) If R = 5u and t are elements of set P_{-27} for $u \in \mathbb{Z}$, then we obtain

$$5ut - 27 = X^2$$
. (3.52)

Applying (mod 5) on both sides of the (3.52), we have

$$X^2 \equiv 3 \pmod{5}.$$

Using (2.6) of Theorem 2.6, we get

$$(\frac{3}{5})(\frac{5}{3}) = (-1)^{\frac{3-1}{2}\frac{5-1}{2}} = -1.$$

And $(\frac{5}{3}) = (\frac{2}{3}) = -1$ from (2.4) in Lemma 2.4. So, we obtain

$$(\frac{3}{5}) = -1$$

This is a contradiction. So, there is no P_{-27} set containing any elements such that $R \in \mathbb{Z}$, $R \equiv 0 \pmod{5}$.

(ii) Assume that s and 8ν , ($\nu \in \mathbb{Z}$) are elements of set P₋₂₇, then we have

$$8\nu s - 27 = Y^2$$

for integer Y. Also, $Y^2 \equiv 5 \pmod{8}$ is satisfied. By Lemma 2.1 and considering residue classes (mod 8), we get $Y^2 \equiv 0, 1, 4 \pmod{8}$. So, 5 is non-quadratic residue (mod 8) and it is a contradiction. Hence, there isnt any set P_{-27} including any element satisfying $R \in \mathbb{Z}$, $R \equiv 0 \pmod{8}$.

(iii) If m and $R \in \mathbb{Z}$, $R \equiv 0 \pmod{11}$ are elements of set P_{-27} ,

$$11tm - 27 = Z^2 \tag{3.53}$$

satisfies for integer Z. Applying (modulo 11), we get

$$\mathsf{Z}^2 \equiv 6 \pmod{11}.$$

Considering property of Legendre symbol from Definition 2.3, we have

$$(\frac{6}{11}) = (\frac{2}{11})(\frac{3}{11}).$$

From (2.4) and (2.3), we obtain $(\frac{2}{11}) = -1$ and $(\frac{3}{11}) = +1$. So, we get $(\frac{6}{11}) = -1$. The equation (3.53) is not solvable. Thus, $R \in \mathbb{Z}$, $R \equiv 0 \pmod{11}$ can not be an element of P_{-27} .

(iv) Assume that t is an element of set P_{-27} , if $R \in \mathbb{Z}$, $R \equiv 0 \pmod{17}$ is also an element of set P_{-27} , then

$$17tn - 27 = T^2 \tag{3.54}$$

for integer T. If we apply (mod 17) on the both sides of (3.54), we get

$$\mathsf{T}^2 \equiv 7 (\mathrm{mod} \ 17).$$

Using Theorem 2.6, we have

$$(\frac{7}{17})(\frac{17}{7}) = (-1)^{(\frac{7-1}{2})(\frac{17-1}{2})} = 1.$$

From the Legendre symbol's property, we can write $(\frac{17}{7}) = (\frac{3}{7})$. Using (2.3) in Lemma 2.4, we obtain that $(\frac{3}{7}) = -1$. So, we have

$$(\frac{7}{17}) = -1$$

This shows that there is no integer T satisfying (3.54). It is a contradiction. Therefore, there is no set P_{-27} including any elements such that $R \in \mathbb{Z}$, $R \equiv 0 \pmod{17}$.

Remark 3.12. Using similar technique, readers also can prove that $\{1, 36, 91\}$, $\{1, 171, 196\}$, $\{3, 12, 21\}$, $\{4, 27, 49\}$, $\{4, 49, 79\}$, $\{6, 18, 42\}$, $\{7, 9, 28\}$, and so on. They are regular $D(-3^3)$ Diophantine triples although they aren't extendible $D(-3^3)$ Diophantine quadruple.

References

- [1] A. Baker, H. Davenport, *The equations* $3x^2 2 = y^2$ and $8x^2 7 = z^2$, Quart. J. Math. Oxford Ser. (2), **20** (1969), 129–137. 1
- [2] I. G. Bashmakova, Diophantus of Alexandria: Arithmetics and The Book of Polygonal Numbers, Nauka, Moskow, (1974).
 1
- [3] A. F. Beardon, M. N. Deshpande, Diophantine triples, The Mathematical Gazette, 86 (2002), 258–260. 1
- [4] E. Brown, Sets in which xy + k is Always a Square, Math. Comp., 45 (1985), 613–620. 1

- [5] M. N. Deshpande, On interesting family of Diophantine triples, Int. J. Math. Ed. Sci. Tech., 33 (2002), 253-256. 1
- [6] L. E. Dickson, *History of Theory of Numbers: Diophantine Analysis*, Dove Publ., New York, (2005). 1
- [7] A. Dujella, A. Jurasić, Some Diophantine Triples and Quadruples for Quadratic Polynomials, J. Comb. Number Theory, 3 (2011), 123–141. 1, 2.8
- [8] P. Fermat, Observations sur Diophante, Oeuvres de Fermat, Paris, (1891). 1
- [9] A. Fillipin, Non-extend ability of D(-1) triples of the form {1,10, c}, Int. J. Math. Math. Sci., 35 (2005), 2217–2226. 1
- [10] Y. Fujita, The D(1)-extensions of D(-1)-triples {1,2, c} and integer points on the attached elliptic curves, Acta Arith., 128 (2007), 349–375.
- [11] L. Goldmakher, Legendre, Jacobi and Kronecker Symbols Section, Number Theory Lecture Notes, 4 pages. 1, 2.1, 2.2, 2.3, 2.5
- M. A. Gopalan, V. Sangeetha, M. Somnath, Construction of the Diophantine Triple involving polygonal numbers, Sch. J. Eng. Tech., 2 (2014), 19–22.
- [13] M. A. Gopalan, G. Srividhya, Two special Diophantine triples, Diophantus J. Math., 1 (2012), 23–27.
- [14] M. A. Gopalan, S. Vidhyalakshmi, S. Mallika, Some special non-extendable Diophantine triples, Sch. J. Eng. Tech., 2 (2014), 159–160. 1
- [15] M. A. Gopalan, S. Vidhyalaksfmi, Ö. Özer, A Collection of Pellian Equation (Solutions and Properties), Akinik Publications, New Delhi, (2018). 1
- [16] K. S. Kedlaya, Solving constrained Pell equations, Math. Comp., 67 (1998), 833-842. 1
- [17] P. Kurur (Instructor), R. Saptharishi (Scribe), Computational Number Theory, Lecture Notes, Quadratic Reciprocity (contd.) Section, 3 pages. 1, 2.6, 2.7
- [18] R. A. Mollin, Fundamental Number theory with Applications, Chapman & Hall/CRC, Boca Raton, (2008). 1
- [19] Ö. Özer, A Note On The Particular Sets With Size Three, Boundary Field Prob. Comput. Simul. J., 55 (2016), 56–59. 1
- [20] Ö. Özer, On The Some Particular Sets, Kirklareli Univer. J. Eng. Sci., 2 (2016), 99–108.
- [21] Ö. Özer, Some Properties of The Certain Pt Sets, Int. J. Algebra Stat., 6 (2017), 117–130.
- [22] Ö. Özer, On The Some Non Extandable Regular P₋₂ Sets, Malaysian J. Math. Sci., 12 (2018), 255–266. 1
- [23] J. Roberts, Lure of the Integers, Mathematical Association of America, Washington, DC, (1992). 1