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Abstract
In this paper, we submit some new travelling wave solutions for the Vakhnenko–Parkes equation via the modified exponen-

tial function method. The obtained solutions include hyperbolic, exponential, trigonometric function solutions. Regarding these
solutions, the 2D and 3D graphs and contour simulations are presented.
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1. Introduction

Nonlinear partial differential equations have an important place in other sciences such as physics and
engineering. There are various methods in the literature to find solutions to such equations. Some of
these are as follows; the trial equation method [35, 38], the extended trial equation method [47, 48],
the new function method [1, 2, 14], the generalized Bernoulli sub-equation function method [8, 16, 54],
Kudryashov’s method [33, 39], the sine-Gordon expansion method [10, 21, 34, 55], Hirota bilinear method
[28, 50, 51] and so on. In this study, we apply the modified exponential function method (MEFM) to
the Vakhnenko—Parkes (VP) equation. Vakhnenko and Parkes have obtained an exact implicit N-soliton
solution by Hirota method. To construct conservation laws, a Backlund transformation is used. The
standart inverse scattering transform method has gave M-mode periodic solutions. In the other study, a
variable separation solution with two arbitrary functions is obtained and the soliton-type, instanton-type
and rogue wave-type structures are presented [61]. The many scientist’s studies on the Vakhnenko-
–Parkes (VP) equation via various methods can be seen at [29, 36, 42, 44, 49].

uuxxt − uxuxt + u
2ut = 0. (1.1)

The Vakhnenko equation (VE) models the propagation of high-frequency waves in a relaxing medium.
The Vakhnenko-Parkes equation is a non-linear equation which is an alternative form of VE.
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This paper is organized as follows: In the 2nd Section, we present the general structure of the modified
exponential function method. In Section 3, the application of the purposed method to Vakhnenko–Parkes
equation and all figures obtained from solutions are presented. In the last section, we present some
conclusions.

2. Analysis of the Method

MEFM has the three steps that can be summarized as follows [9, 13, 30, 53].
Let consider the nonlinear partial differential equations to apply this method as follows;

P (u,ux,ut,uxx,utt,utx, · · · ) = 0, (2.1)

where u = u(x, t) is unknown function, P is a polynomial that has u(x, t) function and its partial deriva-
tives respect to x and t.
Step 1: Suppose that the traveling wave transformation as,

u(x, t) = U(ζ), ζ = k (x− ct) , (2.2)

where k, c are a nonzero constants that can be determined later. Using partial derivatives of the Eq. (2.2)
into Eq. (2.1), the Eq. (2.1) is converted to a nonlinear ordinary differential equation defined as;

N
(
U,U ′,U ′′,U ′′′, · · ·

)
= 0, (2.3)

where N is a polynomial depend on U.
Step 2: We suppose the traveling wave solution of Eq. (2.3) can be expressed as follows;

U (ζ) =

N∑
i=0

Ai [exp (−Ω (ζ))]i

M∑
j=0
Bj [exp (−Ω (ζ))]j

=
A0 +A1 exp (−Ω) + · · ·+AN exp (N (−Ω))

B0 +B1 exp (−Ω) + · · ·+BM exp (M (−Ω))
, (2.4)

where Ai,Bj, (0 6 i 6 N, 0 6 j 6M) are constants can be determined later, AN 6= 0,BM 6= 0 and Ω =
Ω (ζ) provides the following ordinary differential equation;

Ω ′ (ζ) = exp (−Ω (ζ)) + µ exp (Ω (ζ)) + λ. (2.5)

When we solve the Eq. (2.5), we reach the five solution families as follows [7, 15]:
Family 1: When µ 6= 0, λ2 − 4µ > 0,

Ω (ζ) = ln

(
−
√
λ2 − 4µ
2µ

tanh

(√
λ2 − 4µ

2
(ζ+ E)

)
−
λ

2µ

)
. (2.6)

Family 2: When µ 6= 0, λ2 − 4µ < 0,

Ω (ζ) = ln

(√
−λ2 + 4µ

2µ
tan

(√
−λ2 + 4µ

2
(ζ+ E)

)
−
λ

2µ

)
. (2.7)

Family 3: When µ = 0, λ 6= 0 and λ2 − 4µ > 0,

Ω (ζ) = − ln
(

λ

exp (λ(ζ+ E)) − 1

)
. (2.8)

Family 4: When µ 6= 0, λ 6= 0 and λ2 − 4µ = 0,

Ω (ζ) = ln
(
−

2λ(ζ+ E) + 4
λ2(ζ+ E)

)
. (2.9)

Family 5: When µ = 0, λ = 0 and λ2 − 4µ = 0,
Ω (ζ) = ln (ζ+ E) . (2.10)

where A0,A1, . . . ,AN,B0,B1, . . . ,BM,E, λ,µ are constants and can be determined later. Using homogenous
balance principle between the highest nonlinear terms with the highest orderderivatives of U in Eq. (2.4)
it can be find a relationship between N and M.



G. Yel, T. Aktürk, Math. Nat. Sci., 6 (2020), 8–14 10

Step 3: Substituting Eq. (2.5) along with solution families into Eq. (2.4) we have a polynomial of
exp(Ω (ξ)). After all coefficients of the similar power of exp(Ω (ξ)) are equated to zero, it yields an
algebraic equation system in terms of A0,A1, . . . ,AN,B0,B1, . . . ,BM,E, λ,µ. At the end of this procedure,
the obtained values of coefficients substituting into Eq. (2.4), it provides the traveling wave solutions of
Eq. (2.1).

3. Application

Let use Eq. (2.2) along with Eq. (2.4) into Eq. (1.1). In this case, we have nonlinear ordinary differential
equation as follows;

k2UU ′′ − ck2 (U ′)2
+

1
3
U3 = 0. (3.1)

When applying the balance principle (3.1), which is the highest-order derivative containing the term UU ′′

and the non-linear U3 term, the following (3.2) relation is obtained,

M+ 2 = N. (3.2)

For suitable integer values of M and N, one can achieve different cases. We have chosen M = 1 and N = 3
values to Eq. (2.4), U,U ′,U ′′ can be written as,

U (ζ) = ψ
ϕ = A0+A1e

−Ω(ζ)+A2e
−2Ω(ζ)+A3e

−3Ω(ζ)

B0+B1e−Ω(ζ) ,

U ′ (ζ) = ψ ′ϕ−ψϕ ′

ϕ2 ,

U ′′ (ζ) = ψ ′′ϕ3−ϕ2ψ ′ϕ ′−(ψϕ ′′+ψ ′ϕ ′)ϕ2+2(ψ ′)2
ψϕ

ϕ4 .

(3.3)

If we consider Eq. (3.3) into Eq. (3.1), some travelling wave solutions have arisen as following submitted.
Case 1:

A0 = −6k2µB0,A1 = µA3 − 6k2λB0,A2 = λA3 − 6k2B0,B1 = −A3
6k2 . (3.4)

Using the above coefficients, we have the following two solution families.
Family 1:

u1,1 (x, t) =
6k2(λ2 − 4µ)µ(

λCosh
[

1
2 (E+ k(−ct+ x))

√
λ2 − 4µ

]
+
√
λ2 − 4µSinh

[
1
2 (E+ k(−ct+ x))

√
λ2 − 4µ

])2 . (3.5)

Figure 1: The 3D and contour graphs and t = 1 for 2D of Eq. (3.5).

Family 2:

u1,2 (x, t) =
6k2(λ2 − 4µ)µ(

λCos
[

1
2 (E+ k(−ct+ x))

√
−λ2 + 4µ

]
−
√

−λ2 + 4µSin
[

1
2 (E+ k(−ct+ x))

√
−λ2 + 4µ

])2 . (3.6)
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Figure 2: The 3D and contour graphs and t = 1 for 2D of Eq. (3.6).

Case 2:
Family 2:

A0 =
µA3B0

B1
,A1 = A3

(
µ+

λB0

B1

)
,A2 = A3

(
λ+

B0

B1

)
,k = i

√
A3

6B1
. (3.7)

The A0,A1,A2,A3,k coefficients enable to write the following two solution families.

Family 1:

u2,1 (x, t) =
µA3

(
−λ2 + 4µ

)(
λCosh [f (x, t)] +

√
λ2 − 4µSinh [f (x, t)]

)2
B1

, (3.8)

where f (x, t) = 1
2

√
λ2 − 4µ

(
E+

i(−ct+x)
√
A3√

6B1

)
.

Figure 3: The 3D and contour graphs and t = 1 for 2D of Eq. (3.8).
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Family 2:

u2,2 (x, t) =
µA3

(
−λ2 + 4µ

)(
λCos[g (x, t)] −

√
−λ2 + 4µSin[g (x, t)]

)2
B1

, (3.9)

where g (x, t) = 1
2

√
−λ2 + 4µ

(
E+

i(−ct+x)
√
A3√

6
√
B1

)
.

Figure 4: The 3D and contour graphs and t = 1 for 2D of Eq. (3.9).

4. Conclusion

In this study, we have successfully obtained new travelling wave solutions of the Vakhnenko-–Parkes
equation by the modified exponential function method. When we compare our results with [36, 42, 44, 49],
we saw that all solutions are exactly apart from them. We plotted the 2D-3D and contour surfaces of all
travelling wave solutions under the suitable constants. It can be said that the mentioned method is
a very effective tool to get analytical solutions of such nonlinear differential equations. Furthermore,
to our knowledge, the submitted solutions appear in the literature for the first time. Trigonometric
and hyperbolic functions, such as periodic functions, are the functions that best describe the solutions
of most problems in physics such as magnetic field, catenary shapes and etc [3–6, 11, 12, 17–20, 22–
27, 31, 32, 37, 40, 41, 43, 45, 46, 52, 56–60]. In this regard, we hope that the submitted solutions may be
helpful to make out the behavior of frequency waves in physical areas.
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