]>
2019
4
1
58
Dynamics and stability results for impulsive type integro-differential equations with generalized fractional derivative
Dynamics and stability results for impulsive type integro-differential equations with generalized fractional derivative
en
en
In this paper, we investigate the existence, uniqueness, and Ulam stability of solutions for impulsive type integro-differential equations with generalized fractional derivative. The arguments are based upon the Banach contraction principle and Schaefer's fixed point theorem.
\begin{keyword}Integro-differential equations \sep impulsive differential equations \sep generalized fractional derivative \sep existence \sep Ulam-Hyers stablity.
\MSC{26A33\sep 34D10\sep 45N05.}
1
12
D.
Vivek
Department of Mathematics
P.S.G. College of Arts and Science
India
peppyvivek@gmail.com
E. M.
Elsayed
Department of Mathematics, Faculty of Science
King Abdulaziz University
Saudi Arabia
emmelsayed@yahoo.com
K.
Kanagarajan
Department of Mathematics
Sri Ramakrishna Mission Vidyalaya College of Arts and Science
India
kanagarajank@gmail.com
Integro-differential equations
impulsive differential equations
generalized fractional derivative
existence
Ulam-Hyers stablity
Article.1.pdf
[
[1]
D. D. Bainov, S. G. Hristova, Integral inequalities of Gronwall type for piecewise continuous functions, J. Appl. Math. Stochastic Anal., 10 (1997), 89-94
##[2]
K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence results for fractional impulsive integrodifferential equations in Banach spaces, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1970-1977
##[3]
M. Benchohra, S. Bouriah, Existence and stability results for nonlinear boundary valur problem for implicit differential equations of fractional order, Moroccan J. Pure Appl. Anal., 1 (2015), 22-37
##[4]
M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Hindawi Publishing Corporation, New York (2006)
##[5]
D. Dhiman, A. Kumar, G. R. Gautam, Existence of solution to fractional order delay differential equations with impulses, Adv. Math. Models Appl., 2 (2017), 155-165
##[6]
J. R. Graef, J. Henderson, A. Ouahab, Impulsive Differential Inclusions: A Fixed Point Approch, De Gruyter, Berlin (2013)
##[7]
K. H. Guan, Q. S. Wang, X. B. He, Oscillation of a pantograph differential equation with impulsive perturbations, Appl. Math. Comput., 219 (2012), 3147-3153
##[8]
R. Hilfer, Application of fractional Calculus in Physics, World Scientific Publishing Co., River Edge (2000)
##[9]
K. Karthikeyan, J. J. Trujillo, Existence and uniqueness results for fractional integrodifferential equations with boundary value conditions, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4037-4043
##[10]
U. N. Katugampola, New approach to a genaralized fractional integral, Appl. Math. Comput., 218 (2011), 860-865
##[11]
U. N. Katugampola, Existence and uniqueness results for a class of generalized fractional differential equations, arXiv, 2014 (2014), 1-9
##[12]
U. N. Katugampola, New approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1-15
##[13]
E. E. Ndiyo, Existence result for solution of second order impulsive differential inclusion to dynamic evolutionary processes, Amer. J. Appl. Math., 7 (2017), 89-92
##[14]
N. Nyamoradi, Existence and multiplicity of solutions for impulsive fractional differential equations, Mediterr. J. Math., 14 (2017), 1-17
##[15]
I. Podlubny, Fractional differential equations, Academic Press, San Diego (1999)
##[16]
D. Vivek, K. Kanagarajan, S. Harikrishnan, Existence and uniqueness results for pantograph equations with generalized fractional derivative, J. Nonlinear Anal. Appl., 2 (2017), 105-112
##[17]
D. Vivek, K. Kanagarajan, S. Harikrishnan, Existence and uniqueness results for implicit differential equations with generalized fractional derivative, J. Nonlinear Anal. Appl., 2017 (2017), 105-112
##[18]
J. R. Wang, M. Fečkan, Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806-831
##[19]
J. R. Wang, Y. Zhou, M. Fečkan, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl., 64 (2012), 3389-3405
##[20]
H. P. Ye, J. M. Gao, Y. S. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081
##[21]
G. L. Zhang, M. H. Song, M. Z. Liu, Asymptotic stability of a class of impulsive delay differential equations, J. Appl. Math., 2012 (2012), 1-9
]