Bernoulli polynomial and the numerical solution of high-order boundary value problems
Volume 4, Issue 1, pp 45--59
http://dx.doi.org/10.22436/mns.04.01.05
Publication Date: August 20, 2019
Submission Date: November 28, 2018
Revision Date: March 03, 2019
Accteptance Date: March 05, 2019
-
2203
Downloads
-
4532
Views
Authors
Mohamed El-Gamel
- Department of Mathematics and Engineering Physics, Faculty of Engineering, Mansoura University, Egypt.
Waleed Adel
- Department of Mathematics and Engineering Physics, Faculty of Engineering, Mansoura University, Egypt.
M. S. El-Azab
- Department of Mathematics and Engineering Physics, Faculty of Engineering, Mansoura University, Egypt.
Abstract
In this work we present a fast and accurate numerical approach for
the higher-order boundary value problems via Bernoulli collocation
method. Properties of Bernoulli polynomial along with their
operational matrices are presented which is used to reduce the
problems to systems of either linear or
nonlinear algebraic equations. Error analysis is included.
Numerical examples illustrate the pertinent characteristic of the
method and its applications to a wide variety of model problems.
The results are compared to other methods.
Share and Cite
ISRP Style
Mohamed El-Gamel, Waleed Adel, M. S. El-Azab, Bernoulli polynomial and the numerical solution of high-order boundary value problems, Mathematics in Natural Science, 4 (2019), no. 1, 45--59
AMA Style
El-Gamel Mohamed, Adel Waleed, El-Azab M. S., Bernoulli polynomial and the numerical solution of high-order boundary value problems. Math. Nat. Sci. (2019); 4(1):45--59
Chicago/Turabian Style
El-Gamel, Mohamed, Adel, Waleed, El-Azab, M. S.. "Bernoulli polynomial and the numerical solution of high-order boundary value problems." Mathematics in Natural Science, 4, no. 1 (2019): 45--59
Keywords
- Bernoulli
- collocation
- higher-order
- astrophysics
- error analysis
MSC
References
-
[1]
S. Abbasbandy, A. Shirzadi, The variational iteration method for a class of eighth-order boundary-value differential equations, Z. Naturforsch. A, 63 (2008), 745--751
-
[2]
M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, Graphs, and Mathematical Tables, John Wiley & Sons, New York (1972)
-
[3]
R. P. Agarwal, Boundary Value Problems for Higher Order Differential Equations, World Scientific Publishing Co., Teaneck (1986)
-
[4]
G. Akram, H. U. Rehman, Numerical solution of eighth order boundary value problems in reproducing kernel space, Numer. Algorithms, 62 (2013), 527--540
-
[5]
U. M. Asher, R. M. M. Mattheij, R. D. Russel, Numerical solution of boundary value problems for ordinary differential equations, Siam, Philadelphia (1995)
-
[6]
E. Babolian, Z. Masouri, Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions, J. Comput. Appl. Math., 220 (2008), 51--57
-
[7]
P. Baldwin, Asymptotic estimates of the eigenvalues of a sixth-order boundary value problem obtained by using global phase-integral methods, Philos. Trans. Roy. Soc. London Ser. A, 322 (1987), 281--305
-
[8]
A. H. Bhrawy, E. Tohidi, F. Soleymani, A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals, Appl. Math. Comput., 219 (2012), 482--497
-
[9]
K. E. Biçer, S. Yalçinbaş, Numerical solution of telegraph equation using Bernoulli collocation method, Proc. Natl. Acad. Sci. India. Sect. A: Phys. Sci., 2018 (2018), 1--7
-
[10]
R. E. D. Bishop, S. M. Cannon, S. Miao, On coupled bending and torsional vibration of uniform beams, J. Sound Vib., 131 (1989), 457--464
-
[11]
A. Boutayeb, E. H. Twizell, Numerical methods for the solution of special sixth-order boundary value problems, Int. J. Comput. Math., 45 (1992), 207--233
-
[12]
A. Boutayeb, E. H. Twizell, Finite difference methods for the solution of eighth-order boundary value problems, Int. J. Comput. Math., 48 (1993), 63--75
-
[13]
S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford (1961)
-
[14]
M. M. Chawla, C. P. Katti, Finite difference methods for two-point boundary value problems involving higher order differential equations, BIT Numer. Math., 19 (1979), 27--33
-
[15]
A. R. Davies, A. Karageoghis, T. N. Phillips, Spectral Galerkin methods for the primary two-point boundary value problem in modelling viscoelastic flows, Int. J. Numer. Math. Eng., 26 (1988), 647--652
-
[16]
M. El-Gamel, A. Abdrabou, Sinc-Galerkin solution to eighth-order boundary value problems, SeMA J., 76 (2019), 249--270
-
[17]
M. El-Gamel, W. Adel, Numerical investigation of the solution of higher-order boundary value problems via Euler matrix method, SeMA J., 75 (2018), 349--364
-
[18]
M. El-Gamel, W. Adel, M. S. El-Azab, Collocation method based on Bernoulli polynomial and shifted Chebychev for solving the Bratu equation, J. Appl. Computat. Math., 7 (2018), 7 pages
-
[19]
M. El-Gamel, M. S. El-Azab, M. Fathy, The numerical solution of sixth order boundary value problems by the Legendre Galerkin method, Acta Univ. Apulensis Math. Inform., 40 (2014), 145--165
-
[20]
M. El-Gamel, A. I. Zayed, Sinc-Galerkin method for solving non-linear boundary value problems, Comput. Math. Appl., 48 (2004), 1285--1298
-
[21]
K. Erdem, S. Yalçinbaş, M. Sezer, A Bernoulli polynomial approach with residual correction for solving mixed linear Fredholm integro-differential-difference equations, J. Difference Equ. Appl., 19 (2013), 1619--1631
-
[22]
V. S. Ertürk, S. Momani, Comparing numerical methods for solving fourth-order boundary value problems, Appl. Math. Comput., 188 (2007), 1963--1968
-
[23]
F. Z. Geng, A new reproducing kernel Hilbert space method for solving nonlinear fourth-order boundary value problems, Appl. Math. Comput., 213 (2009), 163--169
-
[24]
A. Golbabai, S. P. A. Beik, An efficient method based on operational matrices of Bernoulli polynomials for solving matrix differential equations, Comput. Appl. Math., 34 (2015), 159--175
-
[25]
A. Golbabai, M. Javidi, Application of homotopy perturbation method for solving eighth-order boundary value problems, Appl. Math. Comput., 191 (2007), 334--346
-
[26]
F. Haq, A. Ali, Numerical solution of fourth-order boundary value problems using Haar Wavelets, Appl. Math. Sci. (Ruse), 5 (2011), 3131--3146
-
[27]
F. Haq, A. Ali, I. Hussain, Solution of sixth-order boundary-value problems by collocation method using Haar wavelets, Int. J. Phys. Sci., 7 (2012), 5729--5735
-
[28]
E. Hesameddini, M. Riahi, Bernoulli Galerkin matrix method and its convergence analysis for solving system of volterra–fredholm integro-differential Equations, Iran. J. Sci. Technol. Trans. Sci., 43 (2019), 1203--1214
-
[29]
M. Inc, D. J. Evans, An efficient approach to approximate solutions of eighth-order boundary value problems, Int. J. Comput. Math., 81 (2004), 685--692
-
[30]
M. S. Islam, M. B. Hossain, Numerical solutions of eighth-order bvp by the Galerkin residual technique with Bernstein and Legendre polynomials, Appl. Math. Comput., 261 (2015), 48--59
-
[31]
M. S. Islam, I. A. Tirmizi, F. Haq, M. A. Khan, Non-polynomial splines approach to the solution of sixth-order boundary-value problems, Appl. Math. Comput., 195 (2008), 270--284
-
[32]
V. I. Krylov, Approximate calculations of integrals, The Macmillan Co., New York-London (1962)
-
[33]
F.-G. Lang, X.-P. Xu, An effective method for numerical solution and numerical derivatives for sixth order two-Point boundary value problems, Comput. Math. Math. Phys., 55 (2015), 811--822
-
[34]
S. X. Liang, D. J. Jeffrey, An efficient analytical approach for solving fourth-order boundary value problems, Comput. Phys. Comm., 180 (2009), 2034--2040
-
[35]
G. R. Liu, T. Y. Wu, Differential quadrature solutions of eighth-order boundary value differential equations, J. Comput. Appl. Math., 145 (2002), 223--235
-
[36]
K. Maleknejad, R. Mollapourasl, M. Alizadeh, Numerical solution of the Volterra type integral equation of the first kind with wavelet basis, Appl. Math. Comput., 194 (2007), 400--405
-
[37]
K. Maleknejad, B. Rahimi, Modification of block pulse functions and their application to solve numerically Volterra integral equation of the first kind, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 2469--2477
-
[38]
M. Matinfar, H. A. Lashaki, M. Akbari, Numerical approximation based on the Bernoulli polynomials for solving volterra integro-differential equations of high order, Math. Rese., 3 (2017), 19--32
-
[39]
F. Mirzaee, S. Bimesl, An efficient numerical approach for solving systems of high-order linear Volterra integral equations, Scientia Iranica, 21 (2014), 2250--2263
-
[40]
S. T. Mohyud-Din, M. A. Noor, Homotopy perturbation method for solving fourth-order boundary value problems, Math. Probl. Eng., 2007 (2007), 15 pages
-
[41]
S. Momani, M. A. Noor, Numerical comparison of methods for solving a special fourth-order boundary value problem, Appl. Math. Comput., 191 (2007), 218--224
-
[42]
A. Napoli, Solutions of linear second order initial value problems by using Bernoulli polynomials, Appl. Numer. Math., 99 (2016), 109--120
-
[43]
M. A. Noor, S. T. Mohyud-Din, Homotopy perturbation method for solving sixth-order boundary value problems, Comput. Math. Appl., 55 (2008), 2953--2972
-
[44]
M. A. Noor, K. I. Noor, S. T. Mohyud-Din, Variational iteration method for solving sixth-order boundary value problems, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2571--2580
-
[45]
M. G. Porshokouhi, B. Ghanbari, M. Gholami, M. Rashidi, Numerical solution of eighth-order boundary value problems with variational iteration method, Gen. Math. Notes, 2 (2011), 128--133
-
[46]
S. S. Siddiqi, G. Akram, Solution of eighth-order boundary value problems using the non-polynomial spline technique, Int. J. Comput. Math., 84 (2007), 347--368
-
[47]
S. S. Siddiqi, E. H. Twizell, Spline solutions of linear eighth-order boundary value problems, Comput. Methods Appl. Mech. Eng., 131 (1996), 309--325
-
[48]
S. S. Siddiqi, E. H. Twizell, Spline solutions of linear sixth-order boundary value problems, Int. J. Comput. Math., 60 (1996), 295--304
-
[49]
E. Tohidi, A. H. Bhrawy, K. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Appl. Math. Model., 37 (2013), 4283--4294
-
[50]
E. Tohidi, K. Erfani, M. Gachpazan, S. Shateyi, A new Tau method for solving nonlinear Lane-Emden type equations via Bernoulli operational matrix of differentiation, J. Appl. Math., 2013 (2013), 9 pages
-
[51]
E. Tohidi, A. Kiliçman, A Collocation method Based on the Bernoulli operational matrix for solving nonlinear BVPs which arise from the problems in calculus of variation, Math. Probl. Eng., 2013 (2013), 9 pages
-
[52]
F. Toutounian, E. Tohidi, A new Bernoulli matrix method for solving second order linear partial differential equations with the convergence analysis, Appl. Math. Comput., 223 (2013), 298--310
-
[53]
F. Toutounian, E. Tohidi, S. Shateyi, A collocation method based on Bernoulli operational matrix for solving high-order linear complex differential equations in a rectangular domain, Abstr. Appl. Anal., 2013 (2013), 12 pages
-
[54]
K. N. S. K. Viswanadham, S. Ballem, Numerical solution of eighth-order boundary value problems by Galerkin method with quintic B-splines, Int. J. Comput. Appl., 89 (2014), 8880--8887
-
[55]
A.-M. Wazwaz, The numerical solutions of special eighth-order boundary value problems by the modified decomposition method, Neural Parallel Sci. Comput., 8 (2000), 133--146
-
[56]
A.-M. Wazwaz, The numerical solution of special fourth-order boundary value problems by the modified decomposition method, Int. J. Comput. Math., 79 (2002), 345--356
-
[57]
https://www.mathworks.com/help/symbolic/dsolve.html, , , (),