]>
2018
3
1
46
A fixed point theorem in ordered \(G\)-metric spaces with its application via new functions
A fixed point theorem in ordered \(G\)-metric spaces with its application via new functions
en
en
In this paper, we will investigate a fixed point theorem for \((\psi ,\varphi
)\)-weak contraction via new functions in generalized ordered metric spaces.
Furthermore, we present an illustrative application in integral equations.
1
11
Stojan
Radenovic
Nonlinear Analysis Research Group
Faculty of Mathematics and Statistics
Ton Duc Thang University
Ton Duc Thang University
Vietnam
Vietnam
radens@beotel.net
Arslan Hojat
Ansari
Department of Mathematics
Department of Mathematics
Karaj Branch, Islamic Azad University
Payame Noor University
Iran
Iran
mathanalsisamir4@gmail.com
Ali
Turab
Department of Mathematics and Statistics, Faculty of Science and Technology
Thammasat University Rangsit Center
Thailand
taurusnoor@yahoo.com
Muaadh
Almahalebi
Department of Mathematics
Ibn Tofail University
Morocco
muaadh1979@hotmail.fr
\(\Omega \)-distance
fixed point
\(G\)-metric space
Article.1.pdf
[
[1]
C. T. Aage, J. N. Salunke, Fixed point for weak contractions in $G$-metric spaces, Appl. Math. E-Notes, 12 (2012), 23-28
##[2]
M. Abbas, B. E. Rhoades, Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. Comput., 215 (2009), 262-269
##[3]
R. P. Agarwal, M. A. El-Gebeily, D. O'Regan, Generalized in partially ordered metric space, Appl. Anal., 87 (2008), 109-116
##[4]
A. H. Ansari, Note on $\varphi$-$\psi$-contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics and Applications (Payame Noor University), 2014 (2014), 377-380
##[5]
L. B. Ćirić , A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267-273
##[6]
L. B. Ćirić , Coincidence and fixed points for maps on topological spaces, Topology Appl., 154 (2007), 3100-3106
##[7]
L. B. Ćirić, S. Jesić, M. M. Milovanović, J. S. Ume, On the steepest descent approximation method for the zeros of generalized accretive operators, Nonlinear Anal., 69 (2008), 763-769
##[8]
P. N. Dutta, B. S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl., 2008 (2008), 1-8
##[9]
J.-X. Fang, Y. Gao, Common fixed point theorems under strict contractive conditions in Menger space, Nonlinear Anal., 70 (2009), 184-193
##[10]
L. Gholizadeh, A fixed point theorems in generalized ordered metric spaces with application, J. Nonlinear Sci. Appl., 6 (2013), 244-251
##[11]
T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379-1393
##[12]
T. Gnana Bhaskar, V. Lakshmikantham, J. Vasundhara Devi, Monotone iterative technique for functional differential equations with retardation and anticipation, Nonlinear Anal., 66 (2007), 2237-2242
##[13]
N. Hussain, Common fixed point in best approximation for Banach operator pairs with Ćirić type I-contractions, J. Math. Anal. Appl., 338 (2008), 1351-1363
##[14]
O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric space, Math. Japon., 44 (1996), 381-391
##[15]
M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), 1-9
##[16]
H. Kumar Nashine, Coupled common fixed point results in ordered G-metric spaces, J. Nonlinear Sci. Appl., 5 (2012), 1-13
##[17]
Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorems for mapping on complete $G$-metric space, Fixed Point Theory Appl., 2008 (2008), 1-12
##[18]
Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289-297
##[19]
Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl., 2009 (2009), 1-10
##[20]
J. J. Nieto, R. Rodriguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223-239
##[21]
J. J. Nieto, R. Rodriguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.), 23 (2007), 2205-2212
##[22]
D. O'Regan, R. Saadati, Nonlinear contraction theorems in probabilistic spaces, Appl. Math. Comput., 195 (2008), 86-93
##[23]
A. Petrusel, I. A. Rus, Fixed point theorems in ordered $L$-spaces, Proc. Amer. Math. Soc., 134 (2006), 411-418
##[24]
V. Popa, A.-M. Patriciu, A general fixed point theorem for pairs of weakly compatible mappings in $G$-metric spaces, J. Nonlinear Sci. Appl., 5 (2012), 151-160
##[25]
A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435-1443
##[26]
B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683-2696
##[27]
R. Saadati, S. M. Vaezpour, P. Vetro, B. E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Modelling, 52 (2010), 797-801
##[28]
W. Shatanawi, Fixed point theory for contractive mappings satisfying $\Phi$-maps in $G$-metric spaces, Fixed Point Theory Appl., 2010 (2010), 1-9
##[29]
W. Shatanawi, H. Kumar Nashine, A generalization of Banach's contraction principle for nonlinear contraction in a partial metric space, J. Nonlinear Sci. Appl., 5 (2012), 37-43
]
Personalization of learning activities within a virtual environment for training based on fuzzy logic theory
Personalization of learning activities within a virtual environment for training based on fuzzy logic theory
en
en
The development of computers and multimedia technology has opened up new possibilities for training based on virtual
reality. Virtual reality is the most powerful extension of simulation based systems. In virtual reality there is a move to three dimensional, multi-sensory interfaces. A virtual environment for training (VET) can be defined as a computer-generated environment based on virtual reality, to simulate the real world. Learning through a VET can personalize learning needs for learners to promote the quality of learning. However, learners can't be provided with appropriate learning activities because often there is no personalized service to respond to each learner's particular needs. The obvious solution is to generate learning activities based on each learner's profile. Yet it is a complex process, especially with the inaccuracy of data that may contains a learner's
profile. The main goal of this paper is to associate suitable learning activities to each learner based on his profile, to do so, we propose to employ fuzzy logic technique, and the fuzzy inference system to handle reasoning under uncertainty and inaccuracy which is one major issue of great concern in learner model design.
12
17
Fahim
Mohamed
Software Engineering and Information Systems Engineering Team UMI
Faculty of Sciences and Technology
Morocco
fahim.mohamed89@gmail.com
Jakimi
Abdeslam
Software Engineering and Information Systems Engineering Team UMI
Faculty of Sciences and Technology
Morocco
ajakimi@yahoo.fr
El Bermi
Lahcen
Software Engineering and Information Systems Engineering Team UMI
Faculty of Sciences and Technology
Morocco
elbermi.lahcen@gmail.com
Virtual environments for training
learning activities
fuzzy logic
fuzzy inference system
Article.2.pdf
[
[1]
L. de Marcos, J.-J. Martinez, J.-A. Gutierrez, Swarm intelligence in e-learning: a learning object sequencing agent based on competencies, The 10th annual conference on Genetic and evolutionary computation, 2008 (2008), 17-24
##[2]
J. El Bouhdidi, M. Ghailani, A. Fennan, An intelligent architecture for generating evolutionary personalized learning paths based on learner profiles, J. Theoretical Appl. Infor. Tech. (JATIT), 57 (2013), 294-304
##[3]
M. Fahim, A. Jakimi, L. El Bermi, Pedagogical Scenarization for Virtual Environments for Training: Towards Genericity, Coherence and Adaptivity, Int. J. Adv. Eng. Res. Sci. (IJAERS), 12 (2016), 96-103
##[4]
P. Fuchs, G. Moreau, Le traité de la réalité virtuelle, Les Presses de l'Ecole des Mines de Paris, Paris (2006)
##[5]
M. Ghailani, J. E. Bouhdidi, A. Fennan, Towards an adaptive e-learning solution based on ontologies and competencies approach, Int. J. Comput. Appl., 98 (2014), 42-52
##[6]
P. Karampiperis, D. Sampson, Automatic learning object selection and sequencing in web-based intelligent learning systems, Idea Group Inc., 2006 (2006), 56-71
##[7]
A. A. Kardan, M. A. Ebrahim, M. B. Imani, A new personalized learning path generation method: Acomap, Indian J. Sci. Res., 5 (2014), 17-24
##[8]
A. Kumar, J. E. Nalavade, V. Yeola, V. Vivek, Y. Srivastava, An adaptive learning system based on ant colony algorithm, Int. J. Soft Comput. Eng. (IJSCE), 3 (2013), 1-3
##[9]
C. T. Lin, C. L. Chin, Using fuzzy inference and cubic curve to detect and compensate backlight image, Int. J. Fuzzy Syst., 8 (2006), 2-13
##[10]
C. T. Lin, K. W. Fan, C. M. Yeh, H. C. Pu, F. Y. Wu, High-accuracy skew estimation of document images, Int. J. Fuzzy Syst., 8 (2006), 119-126
##[11]
F. Lin, P. Holt, S. Leung, Q. Li, A multiagent and service-oriented architecture for developing adaptive e-learning systems, Int. J. Cont. Eng. Edu. Life Long Learning, 16 (2006), 77-91
##[12]
E. H. Mamdani, S. Assilion, An Experiment in Linguistic Synthesis With a Fuzzy Logic Controller, Int. J. Man-Machine Stud., 7 (1975), 1-13
##[13]
N. Marion, Modélisation de scénarios pédagogiques pour les environnements de réalité virtuelle d'apprentissage humain, PhD Thesis (Universite de Bretagne Occidentale), France (2010)
##[14]
A. Naji, M. Ramdani, Using the ant colony algorithm to establish the best path of learning activities, Appl. Math. Sci., 7 (2013), 3873-3881
##[15]
E.-A. Ouraiba, A. Chikh, A. Taleb-Ahmed, Z. El Yeb dri, Automatic personalization of learning scenarios using svm, 2009 Ninth IEEE International Conference on Advanced Learning Technologies, 2009 (2009), 183-185
##[16]
Q. D. Pham, A. M. Florea, Adaptation To Learning Styles In A Multi-Agent ELearning System, Internet Learning, 2 (2013), 1-10
##[17]
M. Pushpa, ACO in e-learning: Towards an adaptive learning path, Int. J. Comput. Sci. Eng. (IJCSE), 4 (2012), 1-11
##[18]
S. Talhi, M. Djoudi, S. Ouadfel, S. Zidat, Un Canevas de Tuteur Intelligent Hypermédia pour L'Apprentissage à Distance Universitaire, Proc. 4th International Conference on Computer Integrated Manufacturing, 2007 (2007), 1-5
##[19]
G. Valigiani, E. Lutton, C. Fonlupt, P. Collet, Optimisation par" hommilière" de chemins pédagogiques pour un logiciel d'e-learning, Technique et Science Informatiques, 26 (2007), 1245-1268
##[20]
M. Wallace, S. Ioannou, K. Karpouzis, S. Kollias, Possibilistic rule evaluation: A case study in facial expression analysis, Int. J. Fuzzy Syst., 8 (2006), 219-223
##[21]
L. A. Zadeh, Fuzzy set, Information and Control, 8 (1965), 338-353
##[22]
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning--I, Information Sci., 8 (1975), 199-249
]
Damping influence on the critical velocity and response characteristics of structurally pre-stressed beam subjected to traveling harmonic load
Damping influence on the critical velocity and response characteristics of structurally pre-stressed beam subjected to traveling harmonic load
en
en
In this present study, the response characteristics of a flexible member carrying harmonic moving load are investigated. The beam is assumed to be of uniform cross section and has simple support at both ends. The moving concentrated force is assumed to move with constant velocity type of motion. A versatile mathematical approximation technique often used in structural mechanics called assumed mode method is in first instance used to treat the fourth order partial differential equation governing the motion of the slender member to obtain a sequence of second order ordinary differential equations. Integral transform method is further used to treat this sequence of differential equations describing the motion of the beam-load system. Various results in plotted curves show that, the presence of the vital structural parameters such as the axial force \(N\), rotatory inertia correction factor \(r^0\), the foundation modulus \(F_0\), and the shear modulus \(G_0\), significantly enhances the stability of the beam when under the action of moving load. Dynamic effects of these parameters on the critical speed of the dynamical system are carefully studied. It is found that as the values of these parameters increase, the critical speed also increases. Thereby reducing the risk of resonance and thus the safety of the occupant of this structural member is guaranteed.
18
28
B.
Omolofe
Department of Mathematical Sciences, School of Sciences
Federal University of Technology
Nigeria
babatope_omolofe@yahoo.com
T. O.
Awodola
Department of Mathematical Sciences, School of Sciences
Federal University of Technology
Nigeria
toawodola@yahoo.com
T. O.
Adeloye
Department of Mathematics, Faculty of Basic Sciences
Nigeria Maritime University
Nigeria
adeyel@yahoo.com
Response characteristics
flexural member
harmonic load
critical speed
resonance
foundation stiffness
assumed mode
concentrated force
Article.3.pdf
[
[1]
M. Abu-Hilal, H. Zibdeh, Vibration analysis of beams with general boundary conditions traversed by a moving force, J. Sound Vibration, 229 (2000), 377-388
##[2]
G. G. Adams, Critical speeds and the response of a tensioned beam on an elastic foundation to repetitive moving loads, Int. J. Mech. Sci., 37 (1995), 773-781
##[3]
Y. Araar, B. Radjel, Delection Analysis of Clamped Rectangular Plates of Variable Thickness on Elastic Foundation by the Galerkin Method, Res. J. Appl. Services, 2 (2007), 1077-1082
##[4]
T. O. Awodola, Variable velocity influence on the vibration of simply supported bernoulli-euler beam under exponentially varying magnitude moving load, J. Math. Stat., 3 (2007), 228-232
##[5]
T. O Awodola, B. Omolofe, Response to concentrated moving masses of elastically supported rectangular plates resting on winkler elastic foundation, J. Theoretical Appl. Mech., 44 (2014), 65-90
##[6]
R. S. Ayre, L. S. Jacobsen, C. S. Hsu, Transverse vibration of one-and of two-span beams under the action of a moving mass load, Proceedings of the first U. S. National Congress of Applied Mechanics, 1951 (1951), 81-90
##[7]
C. Bilello, L. A. Bergman, Vibration of damaged beams under a moving mass: Theory and experimental validation, J. Sound Vibration, 274 (2004), 567-582
##[8]
J. Clastornic, M. Eisenberger, D. Z. Yankelevsky, M. A. Adin, Beams on Variable Winkler Elastic Foundation, J. Appl. Mech., 53 (1986), 925-928
##[9]
E. Esmailzadeh, M. Ghorashi, Vibration analysis of beams traversed by moving masses, Intern. J. Engin., 8 (1995), 213-220
##[10]
E. Esmailzadeh, M. Ghorashi, Vibration analysis of beams traversed by uniform partially distributed moving masses, J. Sound Vibration, 184 (1995), 9-17
##[11]
L. Frýba, Vibration of solids and structures under moving loads, Springer Science \& Business Media, Groningen (1972)
##[12]
M. H. Ghayesh, S. E. Khadem, Rotatory inertia and temperature effects on non-linear vibration, steady-state response and stability of an axially moving beam with time-dependent velocity, Int. J. Mech. Sci., 50 (2008), 389-404
##[13]
T. R. Hamada, Dynamic analysis of a beam under a moving force: a double laplace transform solution, J. Sound Vibration, 74 (1981), 221-233
##[14]
M. H. Hsu, Vibration characteristics of rectangular plates resting on elastic foundations and carrying any number of sprung masses, Int. J. Appl. Sci. Eng., 4 (2006), 83-89
##[15]
T. C. Huang, V. N. Shah, Elastic system moving on an elastically supported beam, J. Vibration Acoustics Stress Reliab. Design, 106 (1984), 292-297
##[16]
Y. H. Lin, Comments on vibration analysis of beams traversed by uniform partially distributed moving masses, J. Sound Vibration, 199 (1997), 697-700
##[17]
A. V. Metrikine, S. N. Verichev, J. Blaauwendraad, Stability of a two-mass oscillator moving on a beam supported by a visco-elastic half-space, Int. J. Solid Structures, 42 (2005), 1187-1207
##[18]
G. Muscolino, A. Palmeri, Response of beams resting on viscoelastically damped foundation to moving oscillators, Int. J. Solid Srtuctures, 44 (2007), 1317-1336
##[19]
D. K. Nguyen, Free vibration of prestressed Timoshenko beams resting on elastic foundation, Vietnam J. Mech., 29 (2007), 1-12
##[20]
M. Olsson, On the fundamental moving load problem, J. Sound Vibration, 145 (1991), 299-307
##[21]
B. Omolofe, Deflection profile analysis of beams on two-parameter elastic subgrade, Latin Amer. J. Solid Structures, 10 (2013), 263-282
##[22]
B. Omolofe, A. Adedowole, Response characteristics of non-uniform beam with time-dependent boundary conditions and under the actions of travelling distributed masses, J. Appl. Math. Comput. Mech., 16 (2017), 77-99
##[23]
B. Omolofe, T. O. Adeloye, Behavioral study of finite beam resting on elastic foundation and subjected to travelling distributed masses, Latin Amer. J. Solids Structures, 14 (2017), 312-334
##[24]
B. Omolofe, S. N. Ogunyebi, Transverse vibrations of elastic thin beam resting on variable elastic foundations and subjected to traveling distributed forces, Pacific J. Sci. Tech., 10 (2009), 112-119
##[25]
M. Ouchenane, R. Lassoued, K. Ouchenane, Vibration analysis of bridges structures under the influence of moving loads, (a conference proceeding), 3rd International conference on integrity, reliability and failure, Porto/Portugal, 2009 (2009), 20-24
##[26]
A. V. Presterev, L. A. Bergman, An improved series expansion of the solution to the moving oscillator problem, J. Vib. Acoust., 122 (2000), 54-61
##[27]
A. V. Presterev, L. A. Bergman, C. A. Tan, T.-C. Tsao, B. Yang, On the asymptotics of the solution of the moving oscillator problem, J. Sound Vibration, 260 (2003), 519-536
##[28]
G. V. Rao, Linear dynamics of an elastic beam under moving loads, J. Vib. Acoust., 122 (2000), 281-289
##[29]
B. J. Ryu, Dynamic analysis of a beam subjected to a concentrated moving mass, Master Thesis (Yonsei University), Seoul (1983)
##[30]
S. Sadiku, H. H. E. Leipholz, On the dynamics of elastic systems with moving concentrated masses, Ing. Arch., 57 (1987), 223-242
##[31]
D. Stăncioiu, H. Ouyang, J. E. Mottershead, Vibration of a beam excited by a moving oscillator considering separation and reattachment, J. Sound Vibration, 310 (2008), 1128-1140
##[32]
M. M. Stanišić, J. A. Euler, S. T. Montgomery, On a theory concerning the dynamical behaviour of structures carrying moving masses, Ing. Arch., 43 (1974), 295-305
##[33]
M. M. Stanišić, J. C. Hardin, On the response of beams to an arbitrary number of concentrated moving masses, J. Franklin Ins., 287 (1969), 115-123
##[34]
G. G. Strokes, Discussion of a differential equation relating to the breaking of railway bridges, Transactions of the Cambridge Philosophical Society, 85 (1849), 707-735
##[35]
D. Thambiratnam, Y. Zhuge, Dynamic analysis of beams on an elastic foundation subjected to moving loads, J. Sound Vibration, 198 (1996), 149-169
##[36]
S. P. Timoshenko, On the transverse vibrations of bars of uniform cross-section, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43 (1922), 125-131
##[37]
Y. M. Wang, The dynamical analysis of a finite inextensible beam with an attached accelerating mass, Int. J. Solid Structures, 35 (1998), 831-854
##[38]
R. T. Wang, T. H. Chou, Nonlinear vibration of timoshenko beam due to a moving force and the weight of beam, J. Sound Vibration, 218 (1998), 117-131
##[39]
J. J. Wu, Vibration analyses of a portal frame under the action of a moving distributed mass using moving mass element, Int. J. Num. meth. Engin., 62 (2005), 2028-2052
##[40]
J. Ying, C. F. Lu, W. Q. Chen, Two-dimensional elasticity solutions for functionally graded beams resting onelastic foundations, Composite Structures, 84 (2008), 209-219
##[41]
D. M. Yoshida, W. Weaver, Finite element analysis of beams and plates with moving loads, Int. Associat. Bridge Structural Eng., 31 (1971), 179-195
]
On some particular regular Diophantine 3-tuples
On some particular regular Diophantine 3-tuples
en
en
Diophantine n-tuple where n=3 is called as a Diophantine triple. It means that Diophantine triple is a set of three positive integers satisfying special condition. For example, \(\{a,b,c\}\) is called a \(D(k)\)-Diophantine triple if multiplying of any two different of them plus k is a perfect square integer where k is an integer.
In this work, we take in consideration some kind of regular \(D(\pm 3^3 )\)-Diophantine triples. We demonstrate that such sets can not be extendible to \(D(\pm 3^3 )\)-Diophantine quadruple by using algebraic methods such as classical Pell equation’s solutions, solutions of \(ux^2+ vy^2=w\) Diophantine equations where \(u,v,w \in \mathbb Z\), factorization in the set of integers, and so on. Besides, we obtain some notable characteristic properties for such sets.
29
38
O.
Ozer
Department of Mathematics, Faculty of Science and Arts
Kirklareli University
Turkey
ozenozer39@gmail.com
Z. C.
Sahin
Department of Mathematics, Faculty of Science and Arts
Suleyman Demirel University
Turkey
Diophantine Triple
Pell equations
Diophantine equations
modular arithmetic
reciprocity theorem
Legendre symbol
Article.4.pdf
[
[1]
A. Baker, H. Davenport, The equations $3x^2-2=y^2$ and $8x^2-7=z^2$, Quart. J. Math. Oxford Ser. (2), 20 (1969), 129-137
##[2]
I. G. Bashmakova, Diophantus of Alexandria: Arithmetics and The Book of Polygonal Numbers, Nauka, Moskow (1974)
##[3]
A. F. Beardon, M. N. Deshpande, Diophantine triples, The Mathematical Gazette, 86 (2002), 258-260
##[4]
E. Brown, Sets in which $xy+k$ is Always a Square, Math. Comp., 45 (1985), 613-620
##[5]
M. N. Deshpande, On interesting family of Diophantine triples, Int. J. Math. Ed. Sci. Tech., 33 (2002), 253-256
##[6]
L. E. Dickson, History of Theory of Numbers: Diophantine Analysis, Dove Publ., New York (2005)
##[7]
A. Dujella, A. Jurasić, Some Diophantine Triples and Quadruples for Quadratic Polynomials, J. Comb. Number Theory, 3 (2011), 123-141
##[8]
P. Fermat, Observations sur Diophante, Oeuvres de Fermat, Paris (1891)
##[9]
A. Fillipin, Non-extend ability of D(-1) triples of the form $\{1, 10, c\}$, Int. J. Math. Math. Sci., 35 (2005), 2217-2226
##[10]
Y. Fujita, The D(1)-extensions of D(-1)-triples $\{1, 2, c\}$ and integer points on the attached elliptic curves, Acta Arith., 128 (2007), 349-375
##[11]
L. Goldmakher, Legendre, Jacobi and Kronecker Symbols Section, Number Theory Lecture Notes, (4 pages)
##[12]
M. A. Gopalan, V. Sangeetha, M. Somnath, Construction of the Diophantine Triple involving polygonal numbers, Sch. J. Eng. Tech., 2 (2014), 19-22
##[13]
M. A. Gopalan, G. Srividhya, Two special Diophantine triples, Diophantus J. Math., 1 (2012), 23-27
##[14]
M. A. Gopalan, S. Vidhyalakshmi, S. Mallika, Some special non-extendable Diophantine triples, Sch. J. Eng. Tech., 2 (2014), 159-160
##[15]
M. A. Gopalan, S. Vidhyalaksfmi, Ö. Özer, A Collection of Pellian Equation (Solutions and Properties), Akinik Publications, New Delhi (2018)
##[16]
K. S. Kedlaya, Solving constrained Pell equations, Math. Comp., 67 (1998), 833-842
##[17]
P. Kurur (Instructor), R. Saptharishi (Scribe), Computational Number Theory, Lecture Notes, Quadratic Reciprocity (contd.) Section (3 pages)
##[18]
R. A. Mollin, Fundamental Number theory with Applications, Chapman \& Hall/CRC, Boca Raton (2008)
##[19]
Ö. Özer, A Note On The Particular Sets With Size Three, Boundary Field Prob. Comput. Simul. J., 55 (2016), 56-59
##[20]
Ö. Özer, On The Some Particular Sets, Kirklareli Univer. J. Eng. Sci., 2 (2016), 99-108
##[21]
Ö. Özer, Some Properties of The Certain Pt Sets, Int. J. Algebra Stat., 6 (2017), 117-130
##[22]
Ö. Özer, On The Some Non Extandable Regular $P_{-2}$ Sets, Malaysian J. Math. Sci., 12 (2018), 255-266
##[23]
J. Roberts, Lure of the Integers, Mathematical Association of America, Washington, DC (1992)
]
Homotopy analysis method for solving MHD free convection flow from a cooling sheet
Homotopy analysis method for solving MHD free convection flow from a cooling sheet
en
en
In this paper, we investigate the problem of MHD free convection
cooling of a low-heat-resistance sheet that moves
downwards in a viscous fluid. The basic equations are converted into coupled ordinary differential
equations via the similarity transformation, and solved analytically using homotopy analysis method (HAM). The obtained analytical solutions for both of the velocity and the temperature with different values of the
Prandtl number \(Pr\) and the magnetic parameter \(M\) are plotted and discussed in detail.
39
47
Zakia
Hammouch
E3MI, Departement de mathematique, FST Errachidia
Universite Moulay Ismail
Morocco
z.hammouch@fste.umi.ac.ma
Toufik
Mekkaoui
E3MI, Departement de mathematique, FST Errachidia
Universite Moulay Ismail
Morocco
t.mekkaoui@fste.umi.ac.ma
Hssain
Sadki
Departement d'Informatique, FST Errachidia
Universite Moulay Ismail
Morocco
s.hssain@fste.umi.ac.ma
Homotopy analysis method
cooling
MHD flow
similarity solution
Article.5.pdf
[
[1]
S. Abbasbandy, The application of homotopy analysis method to nonlinear equations arising in heat transfer, Phys. Lett. A, 360 (2006), 109-113
##[2]
S. Abbasbandy, Homotopy analysis method for heat radiation equations, Int. Commun. Heat Mass Transfer, 34 (2007), 380-387
##[3]
F. M. Ali, R. Nazar, N. M. Arifin, Numerical Investigation of Free Convective Boundary Layer in a Viscous Fluid, Amer. J. Sci. Res., 5 (2009), 13-19
##[4]
M. Amkadni, A. Azzouzi, Z. Hammouch, On the exact solutions of laminar MHD flow over a stretching flat plate, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 359-368
##[5]
A. S. Bataineh, M. S. M. Noorani, I. Hashim, Homotopy analysis method for singular IVPs of Emden–Fowler type, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1121-1131
##[6]
N. Bedjaoui, M. Guedda, Z. Hammouch, Similarity solutions of the Rayleigh Problem for ostwald-de Wael electrically conduction fluids, Anal. Appl., 9 (2011), 135-159
##[7]
A. Bejan, Convection heat transfer, Wiley, New York (1995)
##[8]
G. Domairry, A. Mohsenzadeh, M. Famouri, The application of homotopy analysis method to solve nonlinear differential equation governing Jeffery--Hamel flow, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 85-95
##[9]
G. Domairry, N. Nadim, Assessment of homotopy analysis method and homotopy perturbation method in non-linear heat transfer equation, Int. Commun. Heat Mass Transfer, 35 (2008), 93-102
##[10]
A. Fakhari, G. Domairry, M. Ebrahimpour, Approximate explicit solutions of nonlinear BBMB equations by homotopy analysis method and comparison with the exact solution, Phys. Lett. A, 368 (2007), 64-68
##[11]
A. R. Ghotbi, Homotopy analysis method for solving the MHD flow over a non-linear stretching sheet, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2653-2663
##[12]
A. R. Ghotbi, H. Bararni, G. Domairry, A. Barari, Investigation of a Powerful Analytical Method into Natural Convection Boundary Layer Flow, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2222-2228
##[13]
M. Guedda, Z. Hammouch, On similarity and pseudo-similarity solutions of Falkner–Skan boundary layers, Fluid Dynam. Res., 38 (2006), 211-223
##[14]
M. Guedda, Z. Hammouch, Similarity Flow Solutions of a Non-Newtonian Power-law Fluid, Int. J. Nonlinear Sci., 6 (2008), 255-264
##[15]
Z. Hammouch, Etude mathématique et numérique de quelques problèmes issus de la dynamique des fluides, Doctoral dissertation, Amiens (2006)
##[16]
Z. Hammouch, Multiple solutions of steady MHD flow of dilatant fluids, Eur. J. Pure Appl. Math., 1 (2008), 11-20
##[17]
Z. Hammouch, M. Guedda, Existence and non-uniqueness of solution for a mixed convection flow through a porous medium, J. Appl. Math. Inform., 31 (2013), 631-642
##[18]
Z. Hammouch, T. Mekkaoui, F. B. M. Belgacem, Double-diffusive natural convection in porous cavity heated by an internal boundary, Math. Eng. Sci. Aeorospace, 7 (2016), 1-14
##[19]
Z. Hammouch, T. Mekkaoui, H. Sadki, Similarity solutions of a steady MHD flow over a semi-infinite surface, Math. Eng. Sci. Aerospace, 8 (2017), 1-9
##[20]
R. U. Haq, Z. Hammouch, S. T. Hussain, T. Mekkaoui, MHD mixed convection flow along a vertically heated sheet, Int. J. Hydrogen Energ., 42 (2017), 15925-15932
##[21]
R. U. Haq, Z. Hammouch, A. W. Khan, Water-based squeezing flow in the presence of carbon nanotubes between two parallel disks, Thermal Science, 20 (2014), 1973-1981
##[22]
R. U. Haq, Z. H. Khan, S. T. Hussain, Z. Hammouch, Flow and heat transfer analysis of water and ethylene glycol based Cu nanoparticles between two parallel disks with suction/injection effects, J. Molecular Liquids, 221 (2009), 298-304
##[23]
R. U. Haq, F. A. Soomro, Z. Hammouch, Heat transfer analysis of CuO-water enclosed in a partially heated rhombus with heated square obstacle, Int. J. Heat Mass Transfer, 118 (2018), 773-784
##[24]
A. Ishak, R. Nazar, I. Pop, MHD boundary-layer flow due to a moving extensible surface, J. Engrg. Math., 62 (2008), 23-33
##[25]
W. M. Kays, M. E. Crawford, Convection heat and mass transfer, McGraw-Hill, New York (1993)
##[26]
S. A. Kechil, I. Hashim, Non-Perturbative Solution of Free-Convective Boundary-Layer Equation by Adomian Decomposition Method, Phys. Lett. A, 363 (2010), 110-114
##[27]
S. L. Lee, J. S. Tsai, Cooling of a continuous moving sheet of finite thickness in the presence of natural convection, Int. J. Heat Mass Transfer, 33 (1990), 457-464
##[28]
S.-J. Liao, On the homotopy Analysis Method for non linear problems, Appl. Math. Comput., 147 (2004), 499-513
##[29]
S.-J. Liao, A new branch of solutions of boundary layer flows over a permeable stretching plate, Int. J. Non-Linear. Mech., 42 (2007), 819-830
##[30]
R. Muthuraj, S. Srinivas, Fully develloped MHD flow of a micropolar and viscous fluids in a vertical porous space using HAM, Int. J. Appl. Math. Mech., 6 (2010), 55-78
##[31]
A. Shafiq, Z. Hammouch, T. N. Sindhu, Bioconvective MHD flow of tangent hyperbolic nanofluid with newtonian heating, Int. J. Mech. Sci., 133 (2017), 759-766
##[32]
A. Shafiq, Z. Hammouch, A. Turab, Impact of radiation in a stagnation point flow of Walters’ B fluid towards a Riga plate, Thermal Sci. Eng. Progress, 6 (2017), 27-33
]