]>
2019
5
1
42
Dynamic behaviors of a single species stage structure system with feedback control
Dynamic behaviors of a single species stage structure system with feedback control
en
en
A single species stage structure system
with feedback control is proposed and studied in this paper.
Local and global stability property of the boundary equilibrium and the positive equilibrium are investigated, respectively.
If the original system is globally stable, then we show that the feedback control only change the position of the unique positive equilibrium and retain the stable property. If the original system is extinct, then we show that the system with feedback control is also extinct. Some examples are presented to verify our main results.
1
12
Liyun
Lai
College of Mathematics and Computer Science
Fuzhou University
P. R. China
1310335147@qq.com
Xiangqin
Yu
College of Mathematics and Computer Science
Fuzhou University
P. R. China
1615657167@qq.com
Fengde
Chen
College of Mathematics and Computer Science
Fuzhou University
P. R. China
fdchen@fzu.edu.cn
Stage structure
species
local stability
Lyapunov function
global stability
Article.1.pdf
[
[1]
W. G. Aiello, H. I. Freedman, A time-delay model of single-species growth with stage structure, Math. Biosci., 101 (1990), 139-144
##[2]
L. Chen, F. D. Chen, Global stability of a Leslie-Gower predator-prey model with feedback controls, Appl. Math. Lett., 22 (2009), 1330-1334
##[3]
L. J. Chen, F. D. Chen, Extinction in a discrete Lotka-Volterra competitive system with the effect of toxic substances and feedback controls, Int. J. Biomath., 8 (2015), 1-13
##[4]
L. J. Chen, L. J. Chen, Z. Li, Permanence of a delayed discrete mutualism model with feedback controls, Math. Comput. Modelling, 50 (2009), 1083-1089
##[5]
F. D. Chen, W. L. Chen, Y. M. Wu, Z. Z. Ma, Permanece of a stage-structured predator-prey system, Appl. Math. Comput., 219 (2013), 8856-8862
##[6]
X. Y. Chen, C. L. Shi, Y. Q. Wang, Almost periodic solution of a discrete Nicholson¡¯s blowflies model with delay and feedback control, Adv. Difference Equ., 2016 (2016), 1-15
##[7]
L. J. Chen, J. T. Sun, Global stability of an SI epidemic model with feedback controls, Appl. Math. Lett., 28 (2014), 53-55
##[8]
F. D. Chen, H. N. Wang, Dynamic behaviors of a Lotka-Volterra competitive system with infinite delay and single feedback control, J. Nonlinear Funct. Anal., 2016 (2016), 1-11
##[9]
F. D. Chen, H. N. Wang, Y. H. Lin, W. L. Chen, Global stability of a stage-structured predator-prey system, Appl. Math. Comput., 223 (2013), 45-53
##[10]
F. D. Chen, X. D. Xie, X. F. Chen, Dynamic behaviors of a stage-structured cooperation model, Commun. Math. Biol. Neurosci., 2015 (2015), 1-19
##[11]
F. D. Chen, X. D. Xie, Z. Li, Partial survival and extinction of a delayed predator-prey model with stage structure, Appl. Math. Comput., 219 (2012), 4157-4162
##[12]
F. D. Chen, J. H. Yang, L. J. Chen, Note on the persistent property of a feedback control system with delays, Nonlinear Anal. Real World Appl., 11 (2010), 1061-1066
##[13]
F. D. Chen, M. S. You, Permanence, extinction and periodic solution of the predator--prey system with Beddington--DeAngelis functional response and stage structure for prey, Nonlinear Anal. Real World Appl., 9 (2008), 207-221
##[14]
X. Q. Ding, S. H. Cheng, The stability of a delayed stage-structured population growth model with feedback controls, J. Biomath., 21 (2006), 225-232
##[15]
Y.-H. Fan, L.-L. Wang, Permanence for a discrete model with feedback control and delay, Discrete Dyn. Nat. Soc., 2008 (2008), 1-8
##[16]
Y.-H. Fan, L.-L. Wang, Global asymptotical stability of a Logistic model with feedback control, Nonlinear Anal. Real World Appl., 11 (2010), 2686-2697
##[17]
X. Gong, X. Xie, R. Han, L. Yang, Hopf bifurcation in a delayed logistic growth with feedback control, Commun. Math. Biol. Neurosci., 2015 (2015), 1-16
##[18]
K. Gopalsamy, P. X. Weng, Feedback regulation of Logistic growth, Internat. J. Math. Sci., 16 (1993), 177-192
##[19]
R. Y. Han, F. D. Chen, Global stability of a commensal symbiosis model with feedback controls, Commun. Math. Biol. Neurosci., 2015 (2015), 1-10
##[20]
R. Y. Han, F. D. Chen, X. D. Xie, Z. S. Miao, Global stability of May cooperative system with feedback controls, Adv. Difference Equ., 2015 (2015), 1-10
##[21]
R. Y. Han, X. D. Xie, F. D. Chen, Permanence and global attractivity of a discrete pollination mutualism in plant-pollinator system with feedback controls, Adv. Difference Equ., 2016 (2016), 1-17
##[22]
R. Y. Han, L. Y. Yang, Y. L. Xue, Global attractivity of a single species stage-structured model with feedback control and infinite delay, Commun. Math. Biol. Neurosci., 2015 (2015), 1-16
##[23]
S. Khajanchi, S. Banerjee, Role of constant prey refuge on stage structure predator-prey model with ratio dependent functional response, Appl. Math. Comput., 2017 (314), 193-198
##[24]
Z. Li, F. D. Chen, Extinction in periodic competitive stage-structured Lotka-Volterra model with the effects of toxic substances, J. Comput. Appl. Math., 231 (2009), 143-153
##[25]
T. T. Li, F. D. Chen, J. H. Chen, Q. X. Lin, Stability of a mutualism model in plant-pollinator system with stage-structure and the Beddington-DeAngelis functional response, J. Nonlinear Funct. Anal., 2017 (2017), 1-13
##[26]
Z. Li, M. Han, F. D. Chen, Global stability of stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes, Int. J. Biomath., 6 (2012), 1-13
##[27]
Z. Li, M. Han, F. D. Chen, Influence of feedback controls on an autonomous Lotka-Volterra competitive system with infinite delays, Nonlinear Anal. Real World Appl., 14 (2013), 402-413
##[28]
Z. Li, M. Han, F. D. Chen, Global stability of a predator-prey system with stage structure and mutual interference, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 173-187
##[29]
Z. Li, M. X. He, Hopf bifurcation in a delayed food-limited model with feedback control, Nonlinear Dynam., 76 (2014), 1215-1224
##[30]
Y. H. Lin, X. D. Xie, F. D. Chen, T. T. Li, Convergences of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes, Adv. Difference Equ., 2016 (2016), 1-19
##[31]
Z.-H. Ma, Z.-Z. Li, S.-F. Wang, T. Li, F.-P. Zhang, Permanence of a predator-prey system with stage structure and time delay, Appl. Math. Comput., 201 (2008), 65-71
##[32]
Z. H. Ma, S. F. Wang, Permanence of a food-chain system with stage structure and time delay, Commun. Math. Biol. Neurosci., 2017 (2017), 1-8
##[33]
Z. S. Miao, F. D. Chen, J. M. Liu, L. Q. Pu, Dynamic behaviors of a discrete Lotka-Volterra competitive system with the effect of toxic substances and feedback controls, Adv. Difference Equ., 2017 (2017), 1-19
##[34]
L. Q. Pu, Z. S. Miao, R. Y. Han, Global stability of a stage-structured predator-prey model, Commun. Math. Biol. Neurosci., 2015 (2015), 1-13
##[35]
C. L. Shi, X. Y. Chen, Y. Q. Wang, Feedback control effect on the Lotka-Volterra prey-predator system with discrete delays, Adv. Difference Equ., 2017 (2017), 1-13
##[36]
C. L. Shi, Z. Li, F. D. Chen, Extinction in a nonautonomous Lotka-Volterra competitive system with infinite delay and feedback controls, Nonlinear Anal. Real World Appl., 13 (2012), 2214-2226
##[37]
X. Y. Song, L. M. Cai, A. U. Neumann, Ratio-dependent predator-prey system with stage structure for prey, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 747-758
##[38]
Y. J. Wang, Periodic and almost periodic solutions of a nonlinear single species discrete model with feedback control, Appl. Math. Comput., 219 (2013), 5480-5486
##[39]
H. L. Wu, F. D. Chen, Harvesting of a single-species system incorporating stage structure and toxicity, Discrete Dyn. Nat. Soc., 2009 (2009), 1-16
##[40]
A. Xiao, C. Q. Lei, Dynamic behaviors of a non-selective harvesting single species stage-structured system incorporating partial closure for the populations, Adv. Difference Equ., 2018 (2018), 1-16
##[41]
J. B. Xu, Z. D. Teng, Permanence for a nonautonomous discrete single-species system with delays and feedback control, Appl. Math. Lett., 23 (2010), 949-954
##[42]
K. Yang, Z. S. Miao, F. D. Chen, X. D. Xie, Influence of single feedback control variable on an autonomous Holling II type cooperative system, J. Math. Anal. Appl., 435 (2016), 874-888
##[43]
S. B. Yu, Extinction for a discrete competition system with feedback controls, Adv. Difference Equ., 2017 (2017), 1-10
##[44]
T. W. Zhang, Y. K. Li, Y. Ye, Persistence and almost periodic solutions for a discrete fishing model with feedback control, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1564-1573
]
Comparaison between the method which is used the spatial contextual information and some methods of image classification
Comparaison between the method which is used the spatial contextual information and some methods of image classification
en
en
In this paper, we present the results obtained for the remote sensing image
classification by using three methods of classification namely, Gaussian
process classification method (GPC), morphological profile for
classification method (MPC) and spatial contextual Gaussian process
classification method (SGPC). Several classification approaches have shown
that the exploitation of spatial contextual information can be attractive to
increase the classification accuracy by introducing a new automated learning
approach based on Gaussian process theory.
13
19
Houda
Hassouna
LARGHYDE Laboratory
University of Biskra
Algeria
houda.hassouna@yahoo.fr
Gaussian process
morphological profile
spatial contextual Gaussian process classification
spatial contextual information
Article.2.pdf
[
[1]
Y. Bazi, F. Melgani, Classification of Hyperspectral Remote Sensing Images Using Gaussian Processes, IEEE Trans. Geosci. Remote Sensing Symposium, 2008 (2008), 1-2
##[2]
Y. Bazi, F. Melgani, Gaussian process approach to remote sensing image classification, IEEE Transactions on Geoscience and Remote Sensing, 48 (2009), 186-197
##[3]
H. Hassouna, F. Melgani, Comparison between spatial contextual Gaussian process classification method and other methods, The conference ADAM (Errachidia, Morroco), 2017 (2017), 1-12
##[4]
H. Hassouna, F. Melgani, Z. Mokhtari, Spatial Contextual Gaussian Process Learning for Remote Sensing Image Classification, Remote Sensing Lett., 6 (2015), 519-528
##[5]
G. Jun, J. Ghosh, Spatially Adaptive Classication of Hyperspectral Data with Gaussian Processes, in: IEEE International Geoscience and Remote Sensing Symposium, 2 (2009), -
##[6]
C. E. Rasmussen, Evaluation of Gaussian Processes and Other Methods for Non-Linear Regression, Ph.D. thesis (University of Toronto), ProQuest LLC, Ann Arbor (1997)
##[7]
C. E. Rasmussen, Z. Ghahramani, Infinite Mixtures of Gaussian Process Experts, Proceeding NIPS'01 Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, 2001 (2001), 881-888
##[8]
C. E. Rasmussen, M. Kuss, Gaussian Processes in Reinforcement Learning, Proceeding NIPS'03 Proceedings of the 16th International Conference on Neural Information Processing Systems, 2003 (2003), 751-758
##[9]
C. E. Rusmassen, C. K. I. Williams, Gaussian Process for Machine Learning, MIT Press, Cambridge (2005)
]
Permanence and extinction in a periodic ratio-dependent population system with stage structure
Permanence and extinction in a periodic ratio-dependent population system with stage structure
en
en
This paper studies a class of nonautonomous two-species
ratio-dependent population system with stage structure. Some
sufficient conditions on the boundedness, permanence, extinction,
and periodic solution of the system are established by using the
comparison method.
20
28
Ahmadjan
Muhammadhaji
College of Mathematics and Systems Science
Xinjiang University
People's Republic of China
ahmatjanam@aliyun.com
Stage-structured ratio-dependent system
permanence
extinction
periodic solution
Article.3.pdf
[
[1]
L. Chen, Models and Research Methods of Mathematical Ecology, Science Press, Beijing (1988)
##[2]
F. D. Chen, M. S. You, Permanence, extinction and periodic solution of the predator-prey system with Beddington-DeAngelis functional response and stage structure for prey, Nonlinear Anal. Real World Appl., 9 (2008), 207-221
##[3]
J. G. Cui, L. S. Chen, W. D. Wang, The effect of dispersal on population growth with stage-structure, Comput. Math. Appl., 39 (2000), 91-102
##[4]
S. Hsu, T. Hwang, Y. Kuang, Rich dynamics of a ratiodependent one prey two predators model, J. Math. Biol., 43 (2001), 377-396
##[5]
Z. X. Li, L. S. Chen, J. M. Huang, Permanence and periodicity of a delayed ratio-dependent predator-prey model with Holling type functional response and stage structure, J. Comput. Appl. Math., 233 (2009), 173-187
##[6]
Z.-H. Ma, Z.-Z. Li, S.-F. Wang, T. Li, F.-P. Zhang, Permanence of a predator-prey system with stage structure and time delay, Appl. Math. Comput., 201 (2008), 65-71
##[7]
R. M. May, Theoretical Ecology, Principle and Applications, Sounders Press, Philadelphia (1976)
##[8]
A. Muhammadhaji, R. Mahemuti, Z. D. Teng, Periodic solutions for n-species Lotka-Volterra competitive systems with pure delays, Chin. J. Math. (N.Y.), 2015 (2015), 1-11
##[9]
A. Muhammadhaji, Z. D. Teng, X. Abdurahman, Permanence and extinction analysis for a delayed ratio-dependent cooperative system with stage structure, Afr. Mat., 25 (2014), 897-909
##[10]
Z. Teng, L. Chen, The positive periodic slotion in periodic Kolmogorov type systems with delays, Acta. Math. Appl. Sinica., 22 (1999), 446-456
##[11]
J. Y. Wang, Q. S. Lu, Z. S. Feng, A nonautonomous predator-prey system with stage structure and double time delays, J. Comput. Appl. Math., 230 (2009), 283-299
##[12]
D. M. Xiao, W. X. Li, M. Han, Dynamics in a ratio-dependent predator-prey model with predator harvesting, J. Math. Anal. Appl., 324 (2006), 14-29
##[13]
R. Xu, M. A. J. Chaplain, F. A. Davidson, Permanence and periodicity of a delayed ratio-dependent predator-prey model with stage structure, J. Math. Anal. Appl., 303 (2005), 602-621
##[14]
R. Xu, Z. Ma, The effect of stage-structure on the permanence of a predator-prey system with time delay, Appl. Math. Comput., 189 (2007), 1164-1177
##[15]
R. Xu, Z. Q. Wang, Periodic solutions of a nonautonomous predator-prey system with stage structure and time delays, J. Comput. Appl. Math., 196 (2006), 70-86
##[16]
Z. Q. Zhang, J. Wu, Z. C. Wang, Periodic solutions of nonautonomous stage-structured cooperative system, Comput. Math. Appl., 47 (2004), 699-706
]
A new result on the global exponential stability of nonlinear neutral volterra integro-differential equation with variable lags
A new result on the global exponential stability of nonlinear neutral volterra integro-differential equation with variable lags
en
en
In this study, the global exponential stability (GES) of the zero
solution of a nonlinear neutral volterra integro-differential
equation (NVIDE) with variable lags has been investigated. Based on
the Lyapunov functional approach, a new stability criterion was
derived for global exponential stability criterions of the
considered equation. An example with numeric simulation has been
given to demonstrate the applicability and accuracy of the obtained result by MATLAB Simulink.
29
43
Yener
Altun
Ercis Management Faculty, Department of Business Administration
Yuzuncu Yil University
Turkey
yeneraltun@yyu.edu.tr
NVIDE
GES
Lyapunov functional
variable lags
Article.4.pdf
[
[1]
R. P. Agarwal, S. R. Grace, Asymptotic stability of certain neutral differential equations, Math. Comput. Modelling, 31 (2000), 9-15
##[2]
Y. Altun, C. Tunc, On the global stability of a neutral differential equation with variable time-lags, Bull. Math. Anal. Appl., 9 (2017), 31-41
##[3]
D. Arslan, A novel hybrid method for singularly perturbed delay differential equations, Gazi University Journal of Science, 32 (2019), 217-223
##[4]
M. Cakir, D. Arslan, The Adomian decomposition method and the differential transform method for numerical solution of multi-pantograph delay differential equations, Applied Mathematics, 6 (2015), 1332-1343
##[5]
H. Chen, Some improved criteria on exponential stability of neutral differential equation, Adv. Difference Equ., 2012 (2012), 1-9
##[6]
H. Chen, X. Meng, An improved exponential stability criterion for a class of neutral delayed differential equations, Appl. Math. Lett., 24 (2011), 1763-1767
##[7]
S. Deng, X. Liao, S. Guo, Asymptotic stability analysis of certain neutral differential equations: a descriptor system approach, Math. Comput. Simulation, 79 (2009), 2981-2993
##[8]
H. A. El-Morshedy, K. Gopalsamy, Nonoscillation, oscillation and convergence of a class of neutral equations, Nonlinear Anal., 40 (2000), 173-183
##[9]
E. Fridman, Stability of linear descriptor systems with delays a Lyapunov-based approach, J. Math. Anal. Appl., 273 (2002), 24-44
##[10]
J. K. Hale, S. M. V. Lunel, Introduction to functional-differential equations, Springer-Verlag, New York (1993)
##[11]
P. Keadnarmol, T. Rojsiraphisal, Globally exponential stability of a certain neutral differential equation with time-varying delays, Adv. Difference Equ., 2014 (2014), 1-10
##[12]
O. M. Kwon, J. H. Park, On improved delay-dependent stability criterion of certain neutral differential equations, Appl. Math. Comput., 199 (2008), 385-391
##[13]
O. M. Kwon, J. H. Park, S. M. Lee, Augmented Lyapunov functional approach to stability of uncertain neutral systems with time-varying delays, Appl. Math. Comput., 207 (2009), 202-212
##[14]
X. Li, Global exponential stability for a class of neural networks, Appl. Math. Lett., 22 (2009), 1235-1239
##[15]
X. Liao, Y. Liu, S. Guo, H. Mai, Asymptotic stability of delayed neural networks: a descriptor system approach, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3120-3133
##[16]
P. T. Nam, V. N. Phat, An improved stability criterion for a class of neutral differential equations, Appl. Math. Lett., 22 (2009), 31-35
##[17]
J. H. Park, Delay-dependent criterion for asymptotic stability of a class of neutral equations, Appl. Math. Lett., 17 (2004), 1203-1206
##[18]
J. H. Park, O. M. Kwon, Stability analysis of certain nonlinear differential equation, Chaos Solitons Fractals, 37 (2008), 450-453
##[19]
T. Rojsiraphisal, P. Niamsup, Exponential stability of certain neutral differential equations, Appl. Math. Comput., 217 (2010), 3875-3880
##[20]
Y. G. Sun, L. Wang, Note on asymptotic stability of a class of neutral differential equations, Appl. Math. Lett., 19 (2006), 949-953
##[21]
C. Tunc, Convergence of solutions of nonlinear neutral differential equations with multiple delays, Bol. Soc. Mat. Mex., 21 (2015), 219-231
##[22]
C. Tunc¸, Y. Altun, Asymptotic stability in neutral differential equations with multiple delays, J. Math. Anal., 7 (2016), 40-53
##[23]
C. Tunc¸, Y. Altun, On the nature of solutions of neutral differential equations with periodic coefficients, Appl. Math. Inf. Sci. (AMIS), 11 (2017), 393-399
]