]>
2020
6
1
25
Modified exponential function method for the KP-BBM equation
Modified exponential function method for the KP-BBM equation
en
en
In this study, the travelling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona- Mahony
equation were obtained by using modified exponential function method. This method provides the
solution of nonlinear partial differential equation by using exponential function. The submitted
solutions are implied in terms of the hyperbolic functions, trigonometric functions. The 2D and
3D graphics and contour simulations of these solution functions were obtained by using computational program.
1
7
Tolga
Akturk
Department of Mathematics and Science Education, Faculty of Education
Ordu University
Turkey
tolgaakturkk@gmail.com
Gulnur
Yel
Faculty of Educational Sciences
Final International University
Turkey
gulnur.yel@final.edu.tr
The nonlinear equations
Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equation (KP-BBM)
the modified exponential function method (MEFM)
Article.1.pdf
[
[1]
T. Akturk, Y. Gurefe, H. Bulut, New function method to the (n + 1)-dimensional nonlinear problems, Int. J. Optim. Control. Theor. Appl. IJOCTA, 7 (2017), 234-239
##[2]
T. Akturk, Y. Gurefe, H. Bulut, An application of the new function method to the Zhiber-Shabat equation, Int. J. Optim. Control. Theor. Appl. IJOCTA, 7 (2017), 271-274
##[3]
Z. Avazzadeh, M. H. Heydari, C. Cattani, Legendre wavelets for fractional partial integro-differential viscoelastic equations with weakly singular kernels, The European Physical Journal Plus, 134 (2019), 1-13
##[4]
H. M. Baskonus, New acoustic wave behaviors to the Davey-Stewartson equation with power-law nonlinearity arising in fluid dynamics, Nonlinear Dynam., 86 (2016), 177-183
##[5]
H. M. Baskonus, New complex and hyperbolic function solutions to the generalized double combined Sinh-Cosh-Gordon equation, AIP Conf. Proc., 1798 (2017), 1-9
##[6]
H. M. Baskonus, Complex soliton solutions to the Gilson-Pickering model, Axioms, 8 (2019), 1-14
##[7]
H. M. Baskonus, H. Bulut, On the complex structures of Kundu-Eckhaus equation via improved Bernoulli sub-equation function method, Waves Random Complex Media, 25 (2015), 720-728
##[8]
H. M. Baskonus, H. Bulut, A. Atangana, On the complex and hyperbolic structures of the longitudinal wave equation in a magneto-electro-elastic circular rod, Smart Materials and Structures, 25 (2016), 1-8
##[9]
H. M. Baskonus, H. Bulut, T. A. Sulaiman, Investigation of various travelling wave solutions to the extended (2 + 1)- dimensional quantum ZK equation, Eur. Phys. J. Plus, 132 (2017), 1-8
##[10]
H. M. Baskonus, H. Bulut, T. A. Sulaiman, New complex hyperbolic structures to the Lonngren-wave equation by using sine-Gordon expansion method, Appl. Math. Nonlinear Sci., 4 (2019), 141-150
##[11]
H. M. Baskonus, T. A. Sulaiman, H. Bulut, Bright, dark optical and other solitons to the generalized higher-order NLSE in optical Fibers, Optical and Quantum Electronics, 50 (2018), 1-12
##[12]
J. L. Bona, On solitary waves and their role in the evolution of long waves, Applications of Nonlinear Analysis in the Physical Sciences, 1981 (1981), 183-205
##[13]
H. Bulut, T. Akturk, Y. Gurefe, Travelling wave solutions of the (N + 1)-dimensional sine-cosine-Gordon equation, AIP Conf. Proc., 1637 (2014), 145-149
##[14]
H. Bulut, G. Yel, H. M. Baskonus, An application of improved Bernoulli sub-equation function method to the nonlinear time-fractional burgers equation, Turk. J. Math. Comput. Sci., 5 (2016), 1-7
##[15]
C. Cattani, Multiscale analysis of wave propagation in composite materials, Math. Model. Anal., 8 (2003), 267-282
##[16]
C. Cattani, Harmonic wavelet solutions of the Schrodinger equation, Int. J. Fluid Mech. Res., 30 (2003), 463-472
##[17]
C. Cattani, T. A. Sulaiman, H. M. Baskonus, H. Bulut, Solitons in an inhomogeneous Murnaghan’s rod, Eur. Phys. J. Plus, 133 (2018), 1-11
##[18]
C. Cattani, T. A. Sulaiman, H. M. Baskonus, H. Bulut, On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel’d-Sokolov systems, Opt. Quant. Electron., 50 (2018), 1-11
##[19]
Y. Chen, Z. Yan, New exact solutions of (2 + 1)-dimensional Gardner equation via the new sine-Gordon equation expansion method, Chaos Solitons Fractals, 26 (2005), 399-406
##[20]
A. Ciancio, H. M. Baskonus, T. A. Sulaiman, H. Bulut, New structural dynamics of isolated waves via the coupled nonlinear Maccari’s system with complex structure, Indian J. Phys., 92 (2018), 1281-1290
##[21]
F. Dusunceli, New exponential and complex traveling wave solutions to the Konopelchenko-Dubrovsky model, Adv. Math. Phys., 2019 (2019), 1-9
##[22]
F. Dusunceli, Solutions for the Drinfeld-Sokolov equation using an IBSEFM method, MSU J. of Sci., 6 (2018), 505-510
##[23]
F. Dusunceli, New exact solutions for the (3+ 1)-dimensional B-type Kadomtsev-Petviashvili equation, Erzincan University Journal of Science and Technology, 12 (2019), 463-468
##[24]
S. M. El-Shaboury, M. K. Ammar, W. M. Yousef, Analytical solutions of the relative orbital motion in unperturbed and in J2-perturbed elliptic orbits, Appl. Math. Nonlinear Sci., 2 (2017), 403-414
##[25]
E. I. Eskitas¸c¸ioglu, M. B. Aktas, H. M. Baskonus, New complex and hyperbolic forms for Ablowitz-Kaup-Newell-Segur wave equation with fourth order, Appl. Math. Nonlinear Sci., 4 (2019), 105-112
##[26]
J. H. He, X. H .Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30 (2006), 700-708
##[27]
M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini, C. Cattani, A computational method for solving stochastic Ito-Volterra integral equations based on stochastic operational matrix for generalized hat basis functions, J. Comput. Phys., 270 (2014), 402-415
##[28]
B. B. Kadomtsev, V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, In Sov. Phys. Dokl., 15 (1970), 539-541
##[29]
C. M. Khalique, I. E. Mhlanga, Travelling waves and conservation laws of a (2 + 1)-dimensional coupling system with Korteweg-de Vries equation, Appl. Math. Nonlinear Sci., 3 (2018), 241-253
##[30]
N. A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2248-2253
##[31]
C. S. Liu, Trial equation method and its applications to nonlinear evolution equations, Acta Phys. Sinica, 54 (2005), 2505-2509
##[32]
S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation, SIAM J. Control Optim., 39 (2001), 1677-1696
##[33]
P. K. Pandey, A new computational algorithm for the solution of second order initial value problems in ordinary differential equations, Appl. Math. Nonlinear Sci., 3 (2018), 167-173
##[34]
Y. Pandir, Y. Gurefe, U. Kadak, E. Misirli, Classification of exact solutions for some nonlinear partial differential equations with generalized evolution, Abstr. Appl. Anal., 2012 (2012), 1-16
##[35]
Y. Pandir, Y. Gurefe, E. Misirli, A new approach to Kudryashov’s method for solving some nonlinear physical models, Int. J. Phys. Sci., 7 (2012), 2860-2866
##[36]
D. Rani, V. Mishra, C. Cattani, Numerical inversion of Laplace transform based on Bernstein operational matrix, Math. Methods Appl. Sci., 41 (2018), 9231-9243
##[37]
D. Rani, V. Mishra, C. Cattani, Numerical inverse Laplace transform for solving a class of fractional differential equations, Symmetry, 11 (2019), 1-20
##[38]
J. J. Rushchitsky, C. Cattani, E. V. Terletskaya, Wavelet analysis of the evolution of a solitary wave in a composite material, Int. Appl. Mech., 40 (2004), 311-318
##[39]
G. Shen, Y. Sun, Y. Xiong, New travelling-wave solutions for Dodd-Bullough equation, J. Appl. Math., 2013 (2013), 1-5
##[40]
Y. Sun, New travelling wave solutions for Sine-Gordon equation, J. Appl. Math., 2014 (2014), 1-4
##[41]
T. A. Sulaiman, H. Bulut, A. Yokus, H. M. Baskonus, On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering, Indian J. Phys., 93 (2019), 647-656
##[42]
T. A. Sulaiman, A. Yokus, N. Gulluoglu, H. M. Baskonus, Regarding the Numerical and Stability Analysis of the Sharma-Tasso-Olver Equation, ITM Web Conf., 22 (2018), 1-9
##[43]
F. Xu, Application of Exp-function method to symmetric regularized long wave (SRLW) equation, Phys. Lett., 372 (2008), 252-257
##[44]
X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Difference Equ., 2015 (2015), 1-17
##[45]
G. Yel, H. M. Baskonus, H. Bulut, Novel archetypes of new coupled Konno–Oono equation by using sine–Gordon expansion method, Opt. Quant. Electron., 49 (2017), 1-10
##[46]
G. Yel, H. M. Baskonus, H. Bulut, Regarding on the some novel exponential travelling wave solutions to the Wu-Zhang system arising in nonlinear water wave model, Indian J. Phys., 93 (2019), 1031-1039
##[47]
A. Yokus, Comparison of Caputo and conformable derivatives for time-fractional Korteweg–de Vries equation via the finite difference method, Internat. J. Modern Phys., 32 (2018), 1-12
##[48]
A. Yokus, S. Gulbahar, Numerical solutions with linearization techniques of the fractional Harry Dym equation, Appl. Math. Nonlinear Sci., 4 (2019), 35-41
##[49]
A. Yokus, T. A. Sulaiman, M. T. Gulluoglu, H. Bulut, Stability analysis, numerical and exact solutions of the (1 + 1)- dimensional NDMBBM equation, ITM Web Conf., 22 (2018), 1-10
##[50]
A. Yokus, M. Tuz, An application of a new version of (G′/G)-expansion method, In AIP Conf. Proc., 1798 (2017), 1-7
##[51]
A. M. Wazwaz, The extended tanh method for new compact and noncompact solutions for the KP-BBM and the ZK-BBM equations, Chaos Solitons Fractals, 38 (2008), 1505-1516
]
Application of the modified exponential function method to Vakhnenko-Parkes equation
Application of the modified exponential function method to Vakhnenko-Parkes equation
en
en
In this paper, we submit some new travelling wave solutions for the Vakhnenko--Parkes equation via
the modified exponential function method. The obtained solutions include hyperbolic, exponential,
trigonometric function solutions. Regarding these solutions, the 2D and 3D graphs and contour simulations are presented.
8
14
Gulnur
Yel
Faculty of Educational Sciences
Final International University
Turkey
gulnur.yel@final.edu.tr
Tolga
Akturk
Department of Mathematics and Science Education, Faculty of Education
Ordu University
Turkey
tolgaakturkk@gmail.com
The nonlinear evolution equations
the Vakhnenko--Parkes equation
the modified exponential function method
Article.2.pdf
[
[1]
T. Akturk, Y. Gurefe, H. Bulut, New function method to the (n + 1)-dimensional nonlinear problems, Int. J. Optim. Control. Theor. Appl. IJOCTA, 7 (2017), 234-239
##[2]
T. Akturk, Y. Gurefe, H. Bulut, An application of the new function method to the Zhiber-Shabat equation, Int. J. Optim. Control. Theor. Appl. IJOCTA, 7 (2017), 271-274
##[3]
Z. Avazzadeh, M. H. Heydari, C. Cattani, Legendre wavelets for fractional partial integro-differential viscoelastic equations with weakly singular kernels, The European Physical Journal Plus, 134 (2019), 1-13
##[4]
H. M. Baskonus, New acoustic wave behaviors to the Davey-Stewartson equation with power-law nonlinearity arising in fluid dynamics, Nonlinear Dynam., 86 (2016), 177-183
##[5]
H. M. Baskonus, New complex and hyperbolic function solutions to the generalized double combined Sinh-Cosh-Gordon equation, AIP Conf. Proc., 2017 (1798), 1-9
##[6]
H. M. Baskonus, Complex soliton solutions to the Gilson-Pickering model, Axioms, 8 (2019), 1-14
##[7]
H. M. Baskonus, H. Bulut, Analytical studies on the (1 + 1)-dimensional nonlinear dispersive modified Benjamin-BonaMahony equation defined by seismic sea waves, Waves Random Complex Media, 25 (2015), 576-586
##[8]
H. M. Baskonus, H. Bulut, On the complex structures of Kundu-Eckhaus equation via improved Bernoulli sub-equation function method, Waves Random Complex Media, 25 (2015), 720-728
##[9]
H. M. Baskonus, H. Bulut, A. Atangana, On the complex and hyperbolic structures of the longitudinal wave equation in a magneto-electro-elastic circular rod, Smart Materials and Structures, 25 (2016), 1-8
##[10]
H. M. Baskonus, H. Bulut, T. A. Sulaiman, Investigation of various travelling wave solutions to the extended (2 + 1)- dimensional quantum ZK equation, Eur. Phys. J. Plus, 132 (2017), 1-8
##[11]
H. M. Baskonus, H. Bulut, T. A. Sulaiman, New complex hyperbolic structures to the Lonngren-wave equation by using sine-Gordon expansion method, Appl. Math. Nonlinear Sci., 4 (2019), 141-150
##[12]
H. M. Baskonus, T. A. Sulaiman, H. Bulut, Bright, dark optical and other solitons to the generalized higher-order NLSE in optical Fibers, Optical and Quantum Electronics, 50 (2018), 1-12
##[13]
H. Bulut, Application of the modified exponential function method to the Cahn-Allen equation, American Institute of Phys., 1798 (2017), 1-8
##[14]
H. Bulut, T. Akturk, Y. Gurefe, Travelling wave solutions of the (N + 1)-dimensional sine-cosine-Gordon equation, AIP Conf. Proc., 1637 (2014), 145-149
##[15]
H. Bulut, T. Akturk, G. Yel, An application of the modified expansion method to nonlinear partial differential equation, Turk. J. Math. Comput. Sci., 10 (2018), 202-206
##[16]
H. Bulut, G. Yel, H. M. Baskonus, An application of improved Bernoulli sub-equation function method to the nonlinear time-fractional burgers equation, Turk. J. Math. Comput. Sci., 5 (2016), 1-7
##[17]
C. Cattani, Multiscale analysis of wave propagation in composite materials, Math. Model. Anal., 8 (2003), 267-282
##[18]
C. Cattani, Harmonic wavelet solutions of the Schrodinger equation, Int. J. Fluid Mech. Res., 30 (2003), 463-472
##[19]
C. Cattani, T. A. Sulaiman, H. M. Baskonus, H. Bulut, Solitons in an inhomogeneous Murnaghan’s rod, Eur. Phys. J. Plus, 133 (2018), 1-11
##[20]
C. Cattani, T. A. Sulaiman, H. M. Baskonus, H. Bulut, On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel’d-Sokolov systems, Opt. Quant. Electron., 50 (2018), 1-11
##[21]
Y. Chen, Z. Yan, New exact solutions of (2 + 1)-dimensional Gardner equation via the new sine-Gordon equation expansion method, Chaos Solitons Fractals, 26 (2005), 399-406
##[22]
A. Ciancio, H. M. Baskonus, T. A. Sulaiman, H. Bulut, New structural dynamics of isolated waves via the coupled nonlinear Maccari’s system with complex structure, Indian J. Phys., 92 (2018), 1281-1290
##[23]
F. Dusunceli, Solutions for the Drinfeld-Sokolov equation using an IBSEFM method, MSU J. of Sci., 6 (2018), 505-510
##[24]
F. Dusunceli, New exact solutions for the (3 + 1)-dimensional B-type Kadomtsev-Petviashvili equation, Erzincan University Journal of Science and Technology, 12 (2019), 463-468
##[25]
F. Dusunceli, New exponential and complex traveling wave solutions to the Konopelchenko-Dubrovsky model, Adv. Math. Phys., 2019 (2019), 1-9
##[26]
S. M. El-Shaboury, M. K. Ammar, W. M. Yousef, Analytical solutions of the relative orbital motion in unperturbed and in J2-perturbed elliptic orbits, Appl. Math. Nonlinear Sci., 2 (2017), 403-414
##[27]
E. I. Eskitaşçıoğlu, M. B. Aktas, H. M. Baskonus, New complex and hyperbolic forms for Ablowitz-Kaup-Newell-Segur wave equation with fourth order, Appl. Math. Nonlinear Sci., 4 (2019), 105-112
##[28]
M. Foroutan, J. Manafian, A. Ranjbaran, Lump solution and its interaction to (3 + 1)-D potential-YTSF equation, Nonlinear Dyn., 92 (2018), 2077-2092
##[29]
Y. Gu, W. Yuan, N. Aminakbari, Q. Jiang, Exact solutions of the Vakhnenko-Parkes equation with complex method, J. Funct. Spaces, 2017 (2017), 1-6
##[30]
J. H. He, X. H .Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30 (2006), 700-708
##[31]
M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini, C. Cattani, A computational method for solving stochastic Itˆo-Volterra integral equations based on stochastic operational matrix for generalized hat basis functions, J. Comput. Phys., 270 (2014), 402-415
##[32]
C. M. Khalique, I. E. Mhlanga, Travelling waves and conservation laws of a (2 + 1)-dimensional coupling system with Korteweg-de Vries equation, Appl. Math. Nonlinear Sci., 3 (2018), 241-253
##[33]
N. A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2248-2253
##[34]
D. Kumar, K. Hosseini, F. Samadani, The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitz´eica type equations in nonlinear optics, Optik, 149 (2017), 439-446
##[35]
C. S. Liu, Trial equation method and its applications to nonlinear evolution equations, Acta Phys. Sinica, 54 (2005), 2505-2509
##[36]
F. Majid, H. Triki, T. Hayat, O. M. Aldossary, A. Biswas, Solitary wave solutions of the Vakhnenko-Parkes equation, Nonlinear Anal. Model. Control, 17 (2012), 60-66
##[37]
P. K. Pandey, A new computational algorithm for the solution of second order initial value problems in ordinary differential equations, Appl. Math. Nonlinear Sci., 3 (2018), 167-173
##[38]
Y. Pandir, Y. Gurefe, U. Kadak, E. Misirli, Classification of exact solutions for some nonlinear partial differential equations with generalized evolution, Abstr. Appl. Anal., 2012 (2012), 1-16
##[39]
Y. Pandir, Y. Gurefe, E. Misirli, A new approach to Kudryashov’s method for solving some nonlinear physical models, Int. J. Phys. Sci., 7 (2012), 2860-2866
##[40]
D. Rani, V. Mishra, C. Cattani, Numerical inversion of Laplace transform based on Bernstein operational matrix, Math. Methods Appl. Sci., 41 (2018), 9231-9243
##[41]
D. Rani, V. Mishra, C. Cattani, Numerical inverse Laplace transform for solving a class of fractional differential equations, Symmetry, 11 (2019), 1-20
##[42]
H. Roshid, Md. R. Kabir, R. C. Bhowmik, B. K. Datta, Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(φ(ζ))-expansion method, SpringerPlus, 3 (2014), 1-10
##[43]
J. J. Rushchitsky, C. Cattani, E. V. Terletskaya, Wavelet analysis of the evolution of a solitary wave in a composite material, Int. Appl. Mech., 40 (2004), 311-318
##[44]
C. T. Sendi, J. Manafian, H. Mobasseri, M. Mirzazadeh, Q. Zhou, A. Bekir, Application of the ITEM for solving three nonlinear evolution equations arising in fluid mechanics, Nonlinear Dyn., 95 (2019), 669-684
##[45]
T. A. Sulaiman, H. Bulut, A. Yokus, H. M. Baskonus, On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering, Indian J. Phys., 93 (2019), 647-656
##[46]
T. A. Sulaiman, A. Yokus, N. Gulluoglu, H. M. Baskonus, Regarding the Numerical and Stability Analysis of the Sharma-Tasso-Olver Equation, ITM Web Conf., 22 (2018), 1-9
##[47]
Y. Sun, New travelling wave solutions for Sine-Gordon equation, J. Appl. Math., 2014 (2014), 1-4
##[48]
G. Shen, Y. Sun, Y. Xiong, New travelling-wave solutions for Dodd-Bullough equation, J. Appl. Math., 2013 (2013), 1-5
##[49]
V. O. Vakhnenko, E. J. Parkes, The two loop soliton solution of the Vakhnenko equation, Nonlinearity, 11 (1998), 1457-1464
##[50]
V. O. Vakhnenko, E. J. Parkes, Approach in theory of nonlinear evolution equations: the Vakhnenko-Parkes equation, Adv. Math. Phys., 2016 (2016), 1-39
##[51]
A. M. Wazwaz, Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh-coth method, Appl. Math. Comput., 190 (2007), 633-640
##[52]
E. W. Weisstein, CRC concise encyclopedia of mathematics, CRC Press, (2002)
##[53]
F. Xu, Application of Exp-function method to symmetric regularized long wave (SRLW) equation, Phys. Lett., 372 (2008), 252-257
##[54]
X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Difference Equ., 2015 (2015), 1-17
##[55]
G. Yel, H. M. Baskonus, H. Bulut, Novel archetypes of new coupled Konno–Oono equation by using sine–Gordon expansion method, Opt. Quant. Electron., 49 (2017), 1-10
##[56]
G. Yel, H. M. Baskonus, H. Bulut, Regarding on the some novel exponential travelling wave solutions to the Wu-Zhang system arising in nonlinear water wave model, Indian J. Phys., 93 (2019), 1031-1039
##[57]
A. Yokus, Comparison of Caputo and conformable derivatives for time-fractional Korteweg–de Vries equation via the finite difference method, Internat. J. Modern Phys., 32 (2018), 1-12
##[58]
A. Yokus, S. Gulbahar, Numerical solutions with linearization techniques of the fractional Harry Dym equation, Appl. Math. Nonlinear Sci., 4 (2019), 35-41
##[59]
A. Yokus, T. A. Sulaiman, M. T. Gulluoglu, H. Bulut, Stability analysis, numerical and exact solutions of the (1 + 1)- dimensional NDMBBM equation, ITM Web Conf., 22 (2018), 1-10
##[60]
A. Yokus, M. Tuz, An application of a new version of (G0/G)-expansion method, In AIP Conf. Proc., 1798 (2017), 1-7
##[61]
Y. Yujian, S. Junquan, S. Shoufeng, D. Yanmei, New coherent structures of the Vakhnenko–Parkes equation, Results in Physics, 2 (2012), 170-174
]
Lacunary statistical boundedness of measurable functions
Lacunary statistical boundedness of measurable functions
en
en
In this article, we present new concept of lacunary statistical boundedness
by taking nonnegative measurable real valued function on $\left( 1,\infty
\right) $. Additionally, we examine some inclusion theorems.
15
19
R.
Savaş
Department of Mathematics
Sakarya University
Turkey
rabiasavass@hotmail.com
Lacunary sequence
statistical boundedness
measurable functions
lacunary statistical bounded
Article.3.pdf
[
[1]
D. Borwein, Linear functionals connected with strong Ces´aro summability, Journal London Math. Soc., 40 (1965), 628-634
##[2]
J. S. Connor, The statistical and strong p−Cesaro convergence of sequences, Analysis, 8 (1988), 47-63
##[3]
P. Das, S. Ghosal, S. Som, Statistical convergence of order α in probability, Arab. J. Math. Sci., 21 (2015), 253-265
##[4]
P. Erdös, G. Tenenbaum, Sur Les Densités de Certaines Suites D'Entiers, Proc. Lond. Math. Soc., 3 (1989), 417-438
##[5]
H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244
##[6]
A. R. Freedman, J. J. Sember, M. Raphael, Some Cesàro-Type Summability Spaces, Proc. Lond. Math. Soc., 37 (1978), 508-520
##[7]
J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313
##[8]
J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160 (1993), 43-51
##[9]
H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347 (1995), 1811-1819
##[10]
F. Nuray, B. Aydin, Strongly summable and statistically convergent functions, Informacines Technologijos Ir Valdymas, 30 (2004), 74-76
##[11]
D. Rath, B. C. Tripathy, On statistically convergent and statistically Cauchy sequences, Indian J. Pure Appl. Math., 25 (1994), 381-386
]
Development of average of internal rate of return method
Development of average of internal rate of return method
en
en
Engineering economy set of mathematical techniques for economic evaluation of investment projects
that present value and internal rate of return method are among the most important of these methods.
Managers and investors have many reasons to using internal rate of return greater willingness shown.
This is while the serious problems associated with using internal rate of return method. In recent years,
several articles have been published in order to fix the way in which we can approach the Magni in 2010.
The aim of this paper is to simplify and facilitate the model is, in other words, by eliminating some of the most
simple and straightforward algorithm to calculate the rate of return Magni way we present period.
20
26
H.
Jafari
Young Researchers and Elite Club, Arak Branch
Islamic Azad University
Iran
Hossein_Jafari_123@yahoo.com
Capital Budgeting
NPV
IRR
project analysis
AIRR
Article.4.pdf
[
[1]
G. Arnold, Corporate financial management, 4th edition, London, Prentice Hall. Engineering economist, 46 (2004), 311-322
##[2]
A. Dean, C. A. Magni, Why IRR is not the rate of return for your investment: Introducing AIRR to the real estate community, Journal of Real Estate Portfolio Management, 18 (2012), 219-230
##[3]
E. J. Farragher, R. T. Kleiman, A. P. Sahu, The association between the use of sophisticated capital budgeting practices and corporate performance, The Engineering Economist,, 46 (2001), 300-311
##[4]
G. B. Hazen, A new perspective on multiple internal rates of return, The Engineering Economist, 48 (2003), 31-51
##[5]
M. Hirschey, Managerial economics, 12th edition, Thomson-south western, Ohio (2009)
##[6]
C. A. Magni, Average internal rate of return and investment decisions: a new perspective, The Engineering Economist, 55 (2010), 150-180
##[7]
J. Michael, The Quarterly review of economics and finance, The Quarterly Review of Economics and Finance, 50 (2010), 234-239
##[8]
C. Norstrom, Modification of the internal rate of return method, Stats konomisk Tidsskrift nr, 4 (1971), 214-231
##[9]
M. Russell, J. Rickard, Uniqueness of non-negative internal rate of return, JIA, 109 (1982), 435-445
]