Results on soft extremally disconnectedness of soft topological spaces

Volume 17, Issue 4, pp 448-464

Publication Date: 2017-08-29

http://dx.doi.org/10.22436/jmcs.017.04.02

Authors

Baravan A. Asaad - Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-region, Iraq

Abstract

Molodtsov [D. Molodtsov, Global optimization, control, and games, III, Comput. Math. Appl., \({\bf 37}\) (1999), 19--31] studied the concept of soft sets. The concept of soft sets is introduced as a general mathematical tool for dealing with uncertainty. In this paper, we give some basic relations about different classes of soft sets and soft closure operator. The purpose of this paper is to introduce soft extremally disconnected spaces via soft sets. Furthermore, some relations of soft sets and soft closure via soft extremally disconnected spaces have been investigated.

Keywords

Soft sets, soft extremally disconnected spaces, soft \(\lambda\)-open sets where \(\lambda\in \{regular، \alpha، pre، semi، b، \beta\}\).

References

[1] M. Akdag, A. Ozkan, Soft \(\alpha\)-open sets and soft \(\alpha\)-continuous functions, Abstr. Appl. Anal., 2014 (2014), 7 pages.
[2] M. Akdag, A. Ozkan, Soft b-open sets and soft b-continuous functions, Math. Sci. (Springer), 8 (2014), 9 pages.
[3] I. Arockiarani, A. A. Lancy, Generalized soft g\(\beta\)-closed sets and soft gs\(\beta\)-closed sets in soft topological spaces, Int. J. Math. Arch., 4 (2013), 17–23.
[4] B. Chen, Soft semi-open sets and related properties in soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 287–294.
[5] D.-G. Chen, E. C. C. Tsang, D. S. Yeung, X.-Z. Wang, The parameterization reduction of soft sets and its applications, Comput. Math. Appl., 49 (2005), 757–763.
[6] S. Das, S. K. Samanta, Soft metric, Ann. Fuzzy Math. Inform., 6 (2013), 77–94.
[7] F. Feng, Y. B. Jun, X.-Z. Zhao, Soft semirings, Comput. Math. Appl., 56 (2008), 2621–2628.
[8] D. N. Georgiou, A. C. Megaritis, V. I. Petropoulos, On soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 1889– 1901.
[9] S. Hussain, B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl., 62 (2011), 4058–4067.
[10] G. Ilango, M. Ravindran, On soft preopen sets in soft topological spaces, Int. J. Math. Res., 5 (2013), 399–409.
[11] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, \(\gamma\)-operation and decompositions of some forms of soft continuity in soft topological spaces, Ann. Fuzzy Math. Inform., 7 (2014), 181–196.
[12] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, Soft semi compactness via soft ideals, Appl. Math. Inf. Sci., 8 (2014), 2297–2306.
[13] Z. Kong, L.-Q. Gao, L.-F. Wong, S. Li, The normal parameter reduction of soft sets and its algorithm, Comput. Math. Appl., 56 (2008), 3029–3037.
[14] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562.
[15] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083.
[16] D. Molodtsov, Soft set theory—first results, Global optimization, control, and games, III, Comput. Math. Appl., 37 (1999), 19–31.
[17] D.-W. Pei, D.-Q. Miao, From soft sets to information systems, IEEE International Conference on Granular Computing, Beijing, China, 2 (2005), 617–621.
[18] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799.
[19] S¸. Y¨ uksel, N. Tozlu, Z. G. Erg¨ ul, Soft regular generalized closed sets in soft topological spaces, Int. J. Math. Anal. (Ruse), 8 (2014), 355–367.
[20] Y. Yumak, A. K. Kaymakcı, Soft \(\beta\)-open sets and their applications, J. New Theory, 4 (2015), 80–89.
[21] ˙I. Zorlutuna, H. C¸ akır, On continuity of soft mappings, Appl. Math. Inf. Sci., 9 (2015), 403–409.
[22] Y. Zou, Z. Xiao, Data analysis approaches of soft sets under incomplete information, Knowl.-Based Syst., 21 (2008), 941–945.

Downloads

XML export