Fourier series of sums of products of poly-Bernoulli functions and their applications

Volume 10, Issue 5, pp 2384--2401

Publication Date: 2017-05-24

http://dx.doi.org/10.22436/jnsa.010.05.10

Authors

Taekyun Kim - Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea.
Dae San Kim - Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea.
Dmitry V. Dolgy - Hanrimwon, Kwangwoon University, Seoul 139-701, Republic of Korea.
Jin-Woo Park - Department of Mathematics Education, Daegu University, Gyeongsan-si, Gyeongsangbuk-do, 712-714, Republic of Korea.

Abstract

In this paper, we consider three types of sums of products of poly-Bernoulli functions and derive Fourier series expansions of them. In addition, we express those three types of functions in terms of Bernoulli functions.

Keywords

Fourier series, Bernoulli polynomial, poly-Bernoulli polynomial, poly-Bernoulli function.

References

[1] T. Arakawa, M. Kaneko, On poly-Bernoulli numbers, Comment. Math. Univ. St. Paul., 48 (1999), 159–167.
[2] A. Bayad, Y. Hamahata, Multiple polylogarithms and multi-poly-Bernoulli polynomials, Funct. Approx. Comment. Math., 46 (2012), 45–61.
[3] D. V. Dolgy, D. S. Kim, T. Kim, T. Mansour, Degenerate poly-Bernoulli polynomials of the second kind, J. Comput. Anal. Appl., 21 (2016), 954–966.
[4] G. V. Dunne, C. Schubert, Bernoulli number identities from quantum field theory and topological string theory, Commun. Number Theory Phys., 7 (2013), 225–249.
[5] C. Faber, R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math., 139 (2000), 173–199.
[6] I. M. Gessel, On Miki’s identity for Bernoulli numbers, J. Number Theory, 110 (2005), 75–82.
[7] M. Kaneko, Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux, 9 (1997), 221–228.
[8] D. S. Kim, D. V. Dolgy, T. Kim, S.-H. Rim, Some formulae for the product of two Bernoulli and Euler polynomials, Abstr. Appl. Anal., 2012 (2012), 15 pages.
[9] D. S. Kim, T. Kim, Bernoulli basis and the product of several Bernoulli polynomials, Int. J. Math. Math. Sci., 2012 (2012), 12 pages.
[10] D. S. Kim, T. Kim, Some identities of higher order Euler polynomials arising from Euler basis, Integral Transforms Spec. Funct., 24 (2013), 734–738.
[11] D. S. Kim, T. Kim, A note on degenerate poly-Bernoulli numbers and polynomials, Adv. Difference Equ., 2015 (2015), 8 pages.
[12] D. S. Kim, T. Kim, A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials, Russ. J. Math. Phys., 22 (2015), 26–33.
[13] D. S. Kim, T. Kim, Higher-order Bernoulli and poly-Bernoulli mixed type polynomials, Georgian Math. J., 22 (2015), 265–272.
[14] D. S. Kim, T. Kim, H. I. Kwon, T. Mansour, Degenerate poly-Bernoulli polynomials with umbral calculus viewpoint, J. Inequal. Appl., 2015 (2015), 13 pages.
[15] D. S. Kim, T. Kim, T. Mansour, J.-J. Seo, Fully degenerate poly-Bernoulli polynomials with a q parameter, Filomat, 30 (2016), 1029–1035.
[16] T. Kim, D. S. Kim, S.-H. Rim, D. V. Dolgy, Fourier series of higher-order Bernoulli functions and their applications, J. Inequal. Appl., 2017 (2017), 7 pages.
[17] T. Kim, D. S. Kim, J.-J. Seo, Fully degenerate poly-Bernoulli numbers and polynomials, Open Math., 14 (2016), 545–556.
[18] J. E. Marsden, Elementary classical analysis, With the assistance of Michael Buchner, Amy Erickson, Adam Hausknecht, Dennis Heifetz, Janet Macrae and William Wilson, and with contributions by Paul Chernoff, Istv´an F´ary and Robert Gulliver, W. H. Freeman and Co., San Francisco, (1974).
[19] K. Shiratani, S. Yokoyama, An application of p-adic convolutions, Mem. Fac. Sci. Kyushu Univ. Ser. A, 36 (1982), 73–83.
[20] P. T. Young, Bernoulli and poly-Bernoulli polynomial convolutions and identities of p-adic Arakawa-Kaneko zeta functions, J. Number Theory, 12 (2016), 1295–1309.
[21] D. G. Zill, M. R. Cullen, Advanced engineering mathematics, second edition, Jones & Bartlett Learning, Massachusetts, (2000).

Downloads

XML export