Variation of parameters for local fractional nonhomogenous lineardifferential equations
-
3996
Downloads
-
6543
Views
Authors
Mohammed AL Horani
- Department of Mathematics, Faculty of Science, University of Hail, Saudi Arabia.
Mamon Abu Hammad
- Department of Mathematics, The University of Jordan, Amman, Jordan.
Roshdi Khalil
- Department of Mathematics, The University of Jordan, Amman, Jordan.
Abstract
In this paper we study the method of variation of parameters to find a particular solution of a
nonhomogenous linear fractional differential equations. A formula similar to that for usual ordinary
differential equations is obtained.
Share and Cite
ISRP Style
Mohammed AL Horani, Mamon Abu Hammad, Roshdi Khalil, Variation of parameters for local fractional nonhomogenous lineardifferential equations, Journal of Mathematics and Computer Science, 16 (2016), no. 2, 147-153
AMA Style
Horani Mohammed AL, Hammad Mamon Abu, Khalil Roshdi, Variation of parameters for local fractional nonhomogenous lineardifferential equations. J Math Comput SCI-JM. (2016); 16(2):147-153
Chicago/Turabian Style
Horani, Mohammed AL, Hammad, Mamon Abu, Khalil, Roshdi. "Variation of parameters for local fractional nonhomogenous lineardifferential equations." Journal of Mathematics and Computer Science, 16, no. 2 (2016): 147-153
Keywords
- Conformable fractional derivative
- fractional integral
- fractional differential equation
- variation of parameters.
MSC
References
-
[1]
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66.
-
[2]
T. Abdeljawad, M. Al Horani, R. Khalil, Conformable fractional semigroups of operators , J. Semigroup Theory Appl., 2015 (2015 ), 9 pages.
-
[3]
B. Bayour, D. F. M. Torres, Existence of solution to a local fractional nonlinear differential equation, J. Comput. Appl. Math., 312 (2016), 127-133
-
[4]
N. Benkhettou, S. Hassani, D. F. M. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud Univ. Sci., 28 (2016), 93-98.
-
[5]
T. Caraballoa, M. A. Diopb, A. A. Ndiayeb, Asymptotic behavior of neutral stochastic partial functional integro-differential equations driven by a fractional Brownian motion, J. Nonlinear Sci. Appl., 7 (2014), 407-421.
-
[6]
A. Gökdogan, E. Ünal, E. Çelik, Existence and uniqueness theorems for sequential linear conformable fractional differential equations , , (to appear in Miskolc Mathematical Notes. ),
-
[7]
M. A. Hammad, R. Khalil, Abel's formula and Wronskian for conformable fractional differential equations, Int. J. Differ. Equ. Appl., 13 (2014), 177-183.
-
[8]
M. Hao, C. Zhai, Application of Schauder fixed point theorem to a coupled system of differential equations of fractional order, J. Nonlinear Sci. Appl., 7 (2014), 131-137.
-
[9]
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.
-
[10]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam (2006)
-
[11]
K. S. Miller, B. Ross, An introduction to fractional calculus and fractional differential equations, John Wiley and Sons, New York (1993)
-
[12]
J. A. Nanware, D. B. Dhaigude, Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions, J. Nonlinear Sci. Appl., 7 (2014), 246-254.