\(p\)-Valent strongly starlike and strongly convex functions connected with linear differential Borel operator
    
        
            
                Volume 26, Issue 2, pp 137--148
            
                        
                http://dx.doi.org/10.22436/jmcs.026.02.04
            
            
                                    
            
            
                
                    Publication Date: November 05, 2021
                
                                
                    Submission Date: July 30, 2021
                
                
                                
                    Revision Date: September 02, 2021
                
                
                                Accteptance Date: September 17, 2021
                            
                                 
        
            
            
                
                    
                        - 
                            1322
                            Downloads
                        
- 
                            2956
                            Views
                        
 
                
             
         
     
    
    
    Authors
    
                S. M.  El-Deeb
                
        
                                        - Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
                                        - Department of Mathematics, College of Science and Arts, Al-Badaya, Qassim University, Buraidah 51452, Saudi Arabia.
                                        G. Murugusundaramoorthy
                
        
                                        - Department of Mathematics, School of Advanced Sciences, Vellore Institute Technology University, Vellore - 632014, India.
                                        A. Alburaikan
                
        
                                        - Department of Mathematics, College of Science and Arts, Al-Badaya, Qassim University, Buraidah 51452, Saudi Arabia.
                                    
        
    Abstract
    In this paper, we define two subclasses \(\mathcal{S}^{\ast }\left( \alpha
,m,\delta ,p,q,\lambda ,\gamma ,\beta \right) \) and \(\mathcal{K}\left(
\alpha ,m,\delta ,p,q,\lambda ,\gamma ,\beta \right) \) of strongly starlike
and strongly convex functions of order \(\beta \) and type \(\gamma \ \)by using
the linear \(q\)-differential Borel operator. We also derive some
interesting properties, such as inclusion relationships of these classes and
the integral operator \(\mathcal{J}_{\mu ,p}\).
 
    
    
    Share and Cite
    
        
        
            ISRP Style
                                                                                                            S. M.  El-Deeb, G. Murugusundaramoorthy, A. Alburaikan, \(p\)-Valent strongly starlike and strongly convex functions connected with linear differential Borel operator, Journal of Mathematics and Computer Science, 26 (2022), no. 2, 137--148
         
        
            AMA Style
                                                                                                            El-Deeb S. M., Murugusundaramoorthy G., Alburaikan A., \(p\)-Valent strongly starlike and strongly convex functions connected with linear differential Borel operator. J Math Comput SCI-JM. (2022); 26(2):137--148
         
        
        
            Chicago/Turabian Style
                                                                                                            El-Deeb, S. M., Murugusundaramoorthy, G., Alburaikan, A.. "\(p\)-Valent strongly starlike and strongly convex functions connected with linear differential Borel operator." Journal of Mathematics and Computer Science, 26, no. 2 (2022): 137--148
         
     
            
    Keywords
    
                -  \(p\)-Valent
-  strongly starlike
-  strongly convex
-  linear \(q\)-differential Borel operator
    MSC
    
    
        
    References
        
                - 
            [1]
            
                                M. H. Abu Risha, M. H. Annaby, H. E. H. Ismail, Z. S. Mansour, Linear $q$-difference equations, Z. Anal. Anwend., 26 (2007), 481--494
                            
            
        
                - 
            [2]
            
                                M. K. Aouf, S. M. El-Deeb, On $p$-valent strongly starlike and strongly convex functions assoicated with generalized linear operator, Montes Taurus J. Pure Appl. Math., 3 (2021), 104--111
                            
            
        
                - 
            [3]
            
                                M. K. Aouf, H. M. Hossen, New criteria for meromorphic $p$-valent starlike functions, Tsukuba J. Math., 17 (1993), 481--486
                            
            
        
                - 
            [4]
            
                                J. H. Choi, M. Saigo, H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276 (2002), 432--445
                            
            
        
                - 
            [5]
            
                                S. M. El-Deeb, B. M. El-Matary, Coefficients Bounds of Multivalent Function Connected with $q$-Analogue of Salagean Operator, Appl. Math. Inf. Sci., 14 (2020), 1057--1065
                            
            
        
                - 
            [6]
            
                                S. M. El-Deeb, G. Murugusundaramoorthy, Applications on a subclass of $\beta$-uniformly starlike functions connected with $q$-Borel distribution, J. Interdisciplinary Math.,  (Submitted)
                            
            
        
                - 
            [7]
            
                                G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge (1990)
                            
            
        
                - 
            [8]
            
                                A. W. Goodman, On the Schwarz Christoffel transformation and $p$-valent functions, Trans. Amer. Math. Soc., 68 (1950), 204--233
                            
            
        
                - 
            [9]
            
                                F. H. Jackson, On $q$-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1909), 253--281
                            
            
        
                - 
            [10]
            
                                D. O. Jackson, T. Fukuda, O. Dunn, E. Majors, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193--203
                            
            
        
                - 
            [11]
            
                                N. Khan, Q. Z. Ahmad, T. Khalid, B. Khan, Results on spirallike $p$-valent functions, AIMS Math., 1 (2017), 12--20
                            
            
        
                - 
            [12]
            
                                B. Khan, Z.-G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent $q$-starlike functions involving higher-order $q$-Derivatives, Mathematics, 8 (2020), 12 pages
                            
            
        
                - 
            [13]
            
                                A. Muhammad, On $p$-valent strong ly starlike and strongly convex functions, Acta Univ. Apulensis, 26 (2011), 179--188
                            
            
        
                - 
            [14]
            
                                M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A Math. Sci., 69 (1993), 234--237
                            
            
        
                - 
            [15]
            
                                M. Nunokawa, S. Owa, A. Ikeda, On the strongly starlikeness of multivalently convex functions of order $\alpha$, Int. J. Math. Math. Sci., 28 (2001), 51--55
                            
            
        
                - 
            [16]
            
                                M. Nunokawa, S. Owa, H. Saitoh, A. Ikeda, N. Koike, Some results for strongly starlike functions, J. Math. Anal. Appl., 212 (1997), 98--106
                            
            
        
                - 
            [17]
            
                                M. Obradovc, S. B. Joshi, On certain classes of strongly starlike functions, Taiwan. J. Math., 2 (1998), 297--302
                            
            
        
                - 
            [18]
            
                                S. Owa, On certain classes of p-valent functions with negative coefficients, Simon Stevin, 59 (1985), 385--402
                            
            
        
                - 
            [19]
            
                                D. A. Patel, N. K. Thakare, On convex hulls and extreme points of $p$-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 27 (1983), 145--160
                            
            
        
                - 
            [20]
            
                                J. K. Prajapat, S. P. Goyal, Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal., 3 (2009), 129--137
                            
            
        
                - 
            [21]
            
                                H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in Geometric Function theory of Complex Analysis, Iran J. Sci. Technol. Trans. Sci., 44 (2020), 327--344
                            
            
        
                - 
            [22]
            
                                H. M. Srivastava, Q. Z. Ahmad, N. Khan, S. Kiran, B. Khan, Some applications of higher order derivatives involving certain subclasses of analytic and multivalent functions, J. Nonlinear Var. Anal., 2 (2018), 343--353
                            
            
        
                - 
            [23]
            
                                H. M. Srivastava, S. M. El-Deeb, A certain class of analytic functions of complex order connected with a $q$-analogue of integral operators, Miskolc Math. Notes, 21 (2020), 417--433
                            
            
        
                - 
            [24]
            
                                A. K. Wanas, J. A. Khuttar, Applications of Borel distribution series on analytic functions, Earthline J. Math. Sci., 4 (2020), 71--82