Some properties of analytical functions related to Borel distribution series
Volume 26, Issue 4, pp 395--404
http://dx.doi.org/10.22436/jmcs.026.04.07
Publication Date: January 14, 2022
Submission Date: November 10, 2021
Revision Date: November 23, 2021
Accteptance Date: December 10, 2021
-
1027
Downloads
-
2336
Views
Authors
H. Niranjan
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore--632014, Tamilnadu, India.
A. N. Murthy
- Department of Mathematics, A. V. V. Junior College, Warangal--506 002, Telangana, India.
P. T. Reddy
- Department of Mathematics, School of Engineering, NNRESGI, Medichal--500088, Telangana, India.
Abstract
In this paper, we introduce and study a new subclass of analytic functions
which are defined by means of a linear operator. Some results connected to
coefficient estimates, growth and distortion theorems, radii of starlikeness, convexity
close-to-convexity and integral means inequalities related to the subclass is obtained.
Share and Cite
ISRP Style
H. Niranjan, A. N. Murthy, P. T. Reddy, Some properties of analytical functions related to Borel distribution series, Journal of Mathematics and Computer Science, 26 (2022), no. 4, 395--404
AMA Style
Niranjan H., Murthy A. N., Reddy P. T., Some properties of analytical functions related to Borel distribution series. J Math Comput SCI-JM. (2022); 26(4):395--404
Chicago/Turabian Style
Niranjan, H., Murthy, A. N., Reddy, P. T.. "Some properties of analytical functions related to Borel distribution series." Journal of Mathematics and Computer Science, 26, no. 4 (2022): 395--404
Keywords
- Analytic
- starlike
- coefficient bounds
- convexity
MSC
References
-
[1]
N. Alessa, B. Venkateswarlu, P. Thirupathi Reddy, K. Loganathan, K. Tamilvanan, A New subclass of analytic functions related to Mittag-Leffler type Poisson distribution series, J. Funct. Spaces, 2021 (2021), 7 pages
-
[2]
A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30 (2016), 2075--2081
-
[3]
D. Bansal, J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ., 61 (2016), 338--350
-
[4]
S. M. El-Deeb, G. Murugusundaramoorthy, A. Alburaikan, Bi-Bazilevic functions based on the Mittag-Leffler-type Borel distribution associated with Legendre polynomials, J. Math. Computer Sci., 24 (2022), 235--245
-
[5]
B. A. Frasin, An application of an operator associated with generalized Mittag-Leffler function, Konuralp J. Math., 7 (2019), 199--202
-
[6]
B. A. Frasin, T. Al-Hawary, F. Yousef, Some properties of a linear operator involving generalized Mittag-Leffler function, Stud. Univ. Babes-Bolyai Math., 65 (2020), 67--75
-
[7]
M. Grag, P. Manohar, S. L. Kalla, A Mittag-Leffler-type function of two variables, Integral Transforms Spec. Funct., 24 (2013), 934--944
-
[8]
J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. (2), 23 (1925), 481--519
-
[9]
G. Mittag-Leffler, Sur la Nouvelle Fonction $E_{\alpha}(x)$, Comptes Rendus de l'Academie des Sciences Paris, 137 (1903), 554--558
-
[10]
G. Murugusundaramoorthy, S. M. El-Deeb, Second Hankel determinant for a class of analytic functions of the Mittag-Leffler-type Borel distribution related with Legendre polynomials, Turkish World Math. Soc. J. Appl. Eng. Math., accepted for publications (2021)
-
[11]
S. M. Popade, R. N. Ingle, P. T. Reddy, On a certain subclass of analytic functions defined by a differential operator, Malaya J. Mat., 8 (2020), 576--580
-
[12]
K. A. Selvakumaran, H. A. Al-Kharsani, D. Baleanu, S. D. Purohi, K. S. Nisar, Inclusion relationships for some subclasses of analytic functions associated with generalized Bessel functions, J. Comput. Anal. Appl., 24 (2018), 81--90
-
[13]
H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109--116
-
[14]
H. Silverman, A survey with open problems on univalent functions whose coefficient are negative, Rocky Mountain J. Math., 21 (1991), 1099--1125
-
[15]
H. Silvermani, Integral means for univalent functions with negative coefficient, Houston J. Math., 23 (1997), 169--174
-
[16]
H. M. Srivastava, G. Murugusundaramoorthy, S. M. El-Deeb, Faber polynomial coefficient estimates of bi-close-to-convex functions connected with the Borel distribution of the Mittag-leffler type, J. Nonlinear Var. Anal., 5 (2021), 103--118
-
[17]
A. K. Wanas, J. A. Khuttar, Applications of Borel distribution series on analytic functions, Earthline J. Math. Sci., 4 (2020), 71--82
-
[18]
A. Wiman, Über die Nullstellen der Funktionen $E_a(x)$, Acta Math., 29 (1905), 217--234