Outbreak spatial pattern formation based on an SI model with the infected cross-diffusion term
Volume 27, Issue 1, pp 1--17
http://dx.doi.org/10.22436/jmcs.027.01.01
Publication Date: February 10, 2022
Submission Date: August 14, 2021
Revision Date: October 25, 2021
Accteptance Date: December 01, 2021
-
1278
Downloads
-
2912
Views
Authors
A. Triska
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, West Java, 40116, Indonesia.
A. Y. Gunawan
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, West Java, 40116, Indonesia.
N. Nuraini
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, West Java, 40116, Indonesia.
Abstract
This study is to discuss the pattern formations of a spatial epidemic model with cross-diffusion of the susceptible and infected groups simultaneously. The infected cross-diffusion term described the situation that the infected was allowed to move to areas with high density of the susceptible such as for work or study, especially after the pandemic. Turing analysis was applied to the model and yielded the conditions for Turing instability corresponding to the model. The amplitude equations were also given by the support of multiple-scale analysis, which then provided information about the stability of the patterns near the Turing bifurcation point. Numerical simulations revealed that there were five types of patterns, such as the spots, spots-stripes, stripes, stripes-holes, and holes. The holes indicated a disease outbreak in a region, while the spots showed non-outbreak. Furthermore, numerical simulations were carried out by varying the cross-diffusion coefficients of the susceptible and infected. The simulation results showed once the cross-diffusion coefficient of the infected was bigger than the susceptible, then an outbreak in a region was triggered. The results of this study showed that the movement of infected had a significant role in the spread of an infectious disease that could lead to another wave of pandemic. By using Turing analysis as a tool, as well as predator-prey model as the basis of movement theory, this paper tries to fill in the gaps in the discussion about the movement of infected people to areas with high density of the susceptible.
Share and Cite
ISRP Style
A. Triska, A. Y. Gunawan, N. Nuraini, Outbreak spatial pattern formation based on an SI model with the infected cross-diffusion term, Journal of Mathematics and Computer Science, 27 (2022), no. 1, 1--17
AMA Style
Triska A., Gunawan A. Y., Nuraini N., Outbreak spatial pattern formation based on an SI model with the infected cross-diffusion term. J Math Comput SCI-JM. (2022); 27(1):1--17
Chicago/Turabian Style
Triska, A., Gunawan, A. Y., Nuraini, N.. "Outbreak spatial pattern formation based on an SI model with the infected cross-diffusion term." Journal of Mathematics and Computer Science, 27, no. 1 (2022): 1--17
Keywords
- Cross-diffusion of the infected
- spatial epidemic model
- Turing pattern
- Turing bifurcation
- amplitude equations
MSC
- 35B36
- 92B05
- 37D99
- 92D25
- 35K57
- 92D30
References
-
[1]
W. Abid, R. Yafia, M. Aziz-Alaoui, A. Aghriche, Turing instability and hopf bifurcation in a modified leslie-gower predator-prey model with cross-diffusion, Int. J. Bifurc. Chaos, 28 (2018), 17 pages
-
[2]
L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an sis epidemic reaction-diffusion model, Disc. Cont. Dyn. Syst., 21 (2008), 1--20
-
[3]
M. Banerjee, S. Ghorai, N. Mukherjee, Study of cross-diffusion induced turing patterns in a ratio-dependent prey-predator model via amplitude equations, Appl. Math. Model., 55 (2018), 383--399
-
[4]
S. Berres, J. G. Marin, On epidemics models with nonlinear cross diffusion, 20th International Congress on Modelling and Simulation, (2013)
-
[5]
Y. L. Cai, D. X. Chi, W. B. Liu, W. M. Wang, Stationary patterns of a cross-diffusion epidemic model, Abstr. Appl. Anal., 2013 (2013), 10 pages
-
[6]
Y. L. Cai, S. L. Yan, H. L. Wang, X. Z. Lian, W. M. Wang, Spatiotemporal dynamics in a reaction-diffusion epidemic model with a time-delay in transmission, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 16 pages
-
[7]
V. Castets, E. Dulos, J. Boissonade, P. De Kepper, Experimental evidence of a sustained standing turing-type nonequilibrium chemical pattern, Phys. Rev. Lett., 64 (1990), 11 pages
-
[8]
M. Chen, R. Wu, B. Liu, L. Chen, Pattern selection in a predator-prey model with michaelis-menten type nonlinear predator harvesting, Ecol. Complex., 36 (2018), 239--249
-
[9]
J. M. Chung, E. Peacock-Lopez, Bifurcation diagrams and turing patterns in a chemical self-replicating reaction-diffusion system with cross diffusion, J. Chem. Phys., 127 (2007), p. 174903
-
[10]
S. Ciliberto, P. Coullet, J. Lega, E. Pampaloni, C. Perez-Garcia, Defects in roll-hexagon competition, Phys. Rev. Lett., 65 (1990), 10 pages
-
[11]
M. C. Cross, P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), 9 pages
-
[12]
Y. Fan, Pattern formation of an epidemic model with cross diffusion, Appl. Math. Comput., 228 (2014), 311--319
-
[13]
G. Gambino, M. Lombardo, S. Lupo, M. Sammartino, Super-critical and sub-critical bifurcations in a reaction-diffusion schnakenberg model with linear cross-diffusion, Ric. Mat., 65 (2016), 449--467
-
[14]
S. Ghorai, S. Poria, Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity, Chaos Solitons Fractals, 91 (2016), 421--429
-
[15]
L. N. Guin, Existence of spatial patterns in a predator-prey model with self-and cross-diffusion, Appl. Math. Comput., 226 (2014), 320--335
-
[16]
L. N. Guin, S. Acharya, Dynamic behaviour of a reaction-diffusion predator-prey model with both refuge and harvesting, Nonlinear Dyn., 88 (2017), 1501--1533
-
[17]
L. N. Guin, M. Haque, P. K. Mandal, The spatial patterns through diffusion-driven instability in a predator-prey model, Appl. Math. Model., 36 (2012), 1825--1841
-
[18]
L. N. Guin, P. K. Mandal, Effect of prey refuge on spatiotemporal dynamics of the reaction-diffusion system, Comput. Math. with Appl., 68 (2014), 1325--1340
-
[19]
R. Han, L. N. Guin, B. Dai, Cross-diffusion-driven pattern formation and selection in a modified leslie-gower predator-prey model with fear effect, J. Biol. Syst., 28 (2020), 27--64
-
[20]
R. Han, L. N. Guin, B. Dai, Consequences of refuge and diffusion in a spatiotemporal predator–prey model, Nonlinear Anal. Real World Appl., 60 (2021), 36 pages
-
[21]
E. E. Holmes, M. A. Lewis, J. Banks, R. Veit, Partial differential equations in ecology: spatial interactions and population dynamics, Ecology, 75 (1994), 17--29
-
[22]
S. K. Kar, R. Ransing, S. Y. Arafat, V. Menon, Second wave of covid-19 pandemic in india: Barriers to effective governmental response, Clin. Med., 36 (2021), 20 pages
-
[23]
S. A. Levin, L. A. Segel, Hypothesis for origin of planktonic patchiness, Nature, 259 (1976), 659--659
-
[24]
L. Li, J. Zhen, S. Gui-Quan, Spatial pattern of an epidemic model with cross-diffusion, Chinese Phys. Lett., 25 (2008), p. 3500
-
[25]
Q.-X. Liu, Z. Jin, Formation of spatial patterns in an epidemic model with constant removal rate of the infectives, J. Stat. Mech. Theory Exp., 2007 (2007), 13 pages
-
[26]
B. Liu, R. Wu, L. Chen, Patterns induced by super cross-diffusion in a predator-prey system with michaelis–menten type harvesting, Math. Biosci., 298 (2008), 71--79
-
[27]
H. Liu, Y. Ye, Y. Wei, W. Ma, M. Ma, K. Zhang, Pattern formation in a reaction-diffusion predator-prey model with weak allee effect and delay, Complexity, 2019 (2019), 12 pages
-
[28]
N. Mukherjee, S. Ghorai, M. Banerjee, Effects of density dependent cross-diffusion on the chaotic patterns in a ratiodependent prey-predator model, Ecol. Complex., 36 (2018), 276--289
-
[29]
N. Mukherjee, S. Ghorai, M. Banerjee, Detection of turing patterns in a three species food chain model via amplitude equation, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 219--236
-
[30]
J. D. Murray, Mathematical biology II: Spatial models and biomedical applications, Springer-Verlag, New York (2001)
-
[31]
S. Riley, K. Eames, V. Isham, D. Mollison, P. Trapman, Five challenges for spatial epidemic models, Epidemics, 10 (2015), 68--71
-
[32]
R. Ruiz-Baier, C. Tian, Mathematical analysis and numerical simulation of pattern formation under cross-diffusion, Nonlinear Anal. Real World Appl., 14 (2013), 601--612
-
[33]
S. Saito, Y. Asai, N. Matsunaga, K. Hayakawa, M. Terada, H. Ohtsu, S. Tsuzuki, N. Ohmagari, First and second covid-19 waves in japan: a comparison of disease severity and characteristics, J. Infect., 82 (2021), 84--123
-
[34]
M. Sambath, K. Balachandran, L. Guin, Spatiotemporal patterns in a predator-prey model with cross-diffusion effect, Int. J. Bifurc. Chaos Appl. Sci. Eng., 28 (2018), 13 pages
-
[35]
G.-Q. Sun, Pattern formation of an epidemic model with diffusion, Nonlinear Dynam., 69 (2012), 1097--1104
-
[36]
G. Sun, Z. Jin, Q.-X. Liu, L. Li, Pattern formation in a spatial S--I model with non-linear incidence rates, J. Stat. Mech. Theory Exp., 2007 (2007), 12 pages
-
[37]
G.-Q. Sun, Z. Jin, Q.-X. Liu, L. Li, Spatial pattern in an epidemic system with cross-diffusion of the susceptible, J. Biol. Systems, 17 (2009), 141--152
-
[38]
A. M. Turing, The chemical basis of morphogenesis, Bull. Math. Biol., 52 (1990), 153--197
-
[39]
T. Wang, Dynamics of an epidemic model with spatial diffusion, Phys. A, 409 (2014), 119--129
-
[40]
W. M. Wang, Y. L. Cai, M. J. Wu, K. Wang, Z. Q. Li, Complex dynamics of a reaction-diffusion epidemic model, Nonlinear Anal. Real World Appl., 13 (2012), 2240--2258
-
[41]
W. Wang, Y. Lin, H. Wang, H. Liu, Y. Tan, Pattern selection in an epidemic model with self and cross diffusion, J. Biol. Syst., 19 (2011), 19--31
-
[42]
W.-M. Wang, H.-W. Liu, Y.-L. Cai, Z.-Q. Li, Turing pattern selection in a reaction-diffusion epidemic model, Chin. Phys. B, 20 (2011), p. 074702
-
[43]
Y. Wang, J. Wang, L. Zhang, Cross diffusion-induced pattern in an SI model, Appl. Math. Comput., 217 (2010), 1965--1970
-
[44]
G. Webb, A reaction-diffusion model for a deterministic diffusive epidemic, J. Math. Anal. Appl., 84 (1981), 150--161
-
[45]
L. Xue, Pattern formation in a predator-prey model with spatial effect, Phys. A, 391 (2012), 5987--5996
-
[46]
S. L. Yuan, C. Q. Xu, T. H. Zhang, Spatial dynamics in a predator-prey model with herd behavior, Chaos, 23 (2013), 10 pages
-
[47]
E. Zemskov, K. Kassner, M. Hauser, W. Horsthemke, Turing space in reaction-diffusion systems with density-dependent cross diffusion, Phys. Rev. E, 87 (2013), 12 pages
-
[48]
E. P. Zemskov, V. K. Vanag, I. R. Epstein, Amplitude equations for reaction-diffusion systems with cross diffusion, Phys. Rev E, 84 (2011), 13 pages
-
[49]
X. C. Zhang, G. Q. Sun, Z. Jin, Spatial dynamics in a predator-prey model with beddington-deangelis functional response, Phys. Rev. E, 85 (2012), 11 pages
-
[50]
T. Zhang, Y. Xing, H. Zang, M. Han, Spatio-temporal dynamics of a reaction-diffusion system for a predator-prey model with hyperbolic mortality, Nonlinear Dyn., 78 (2014), 265--277