The \((2, 3)\)-fuzzy set and its application in BCK-algebras and BCI-algebras
Volume 27, Issue 2, pp 118--130
http://dx.doi.org/10.22436/jmcs.027.02.03
Publication Date: April 13, 2022
Submission Date: January 09, 2022
Revision Date: January 28, 2022
Accteptance Date: February 01, 2022
Authors
S. S. Ahn
- Department of Mathematics Education, Dongguk University, Seoul 04620, Korea.
H. S. Kim
- Research Institute for Natural Science, Department of Mathematics, Hanyang University, Seoul 04763, Korea.
S.-Z. Song
- Department of Mathematics, Jeju National University, Jeju 63243, Korea.
Y. B. Jun
- Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea.
Abstract
It is well-known that an intuitionistic fuzzy set is a generalization of a fuzzy set.
Intuitionistic fuzzy sets deal with two types of fuzzy sets, namely membership function and non-membership function, under the condition that the sum of the membership degree and non-membership degree is less than or equal to \(1\).
If the sum of membership degree and non-membership degree is greater than or equal to \(1\), the intuitionistic fuzzy set feels limited in its role.
The Pythagorean fuzzy set that emerged to overcome these limitations is the generalization of the intuitionistic fuzzy set.
As another form of generalization of the intuitionistic fuzzy set, the concept of the \((2,3)\)-fuzzy set is introduced in this article and several attributes are investigated.
The semigroup structure is assigned to the collection of \((2,3)\)-fuzzy sets.
The concepts of \((2,3)\)-fuzzy subalgebra for BCK/BCI-algebra and closed \((2,3)\)-fuzzy subalgebra for BCI-algebra are introduced and their properties are investigated.
The relationship between the \((2,3)\)-fuzzy subalgebra and the degree function is discussed.
A new \((2,3)\)-fuzzy subalgebra is generated using the given \((2,3)\)-fuzzy subalgebra.
The union and intersection of \((2,3)\)-fuzzy subalgebras are addressed, and
the characterization of the \((2,3)\)-fuzzy subalgebra using the \((2,3)\)-cutty set is addressed.
Conditions for closing the \((2,3)\)-fuzzy subalgebra in the BCI-algebra are retrieved.
Share and Cite
ISRP Style
S. S. Ahn, H. S. Kim, S.-Z. Song, Y. B. Jun, The \((2, 3)\)-fuzzy set and its application in BCK-algebras and BCI-algebras, Journal of Mathematics and Computer Science, 27 (2022), no. 2, 118--130
AMA Style
Ahn S. S., Kim H. S., Song S.-Z., Jun Y. B., The \((2, 3)\)-fuzzy set and its application in BCK-algebras and BCI-algebras. J Math Comput SCI-JM. (2022); 27(2):118--130
Chicago/Turabian Style
Ahn, S. S., Kim, H. S., Song, S.-Z., Jun, Y. B.. "The \((2, 3)\)-fuzzy set and its application in BCK-algebras and BCI-algebras." Journal of Mathematics and Computer Science, 27, no. 2 (2022): 118--130
Keywords
- \((2,3)\)-fuzzy set
- degree function
- (closed) \((2,3)\)-fuzzy subalgebra
- \((2,3)\)-cutty set
MSC
References
-
[1]
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87--96
-
[2]
S. Bhunia, G. Ghorai, Q. Xin, On the characterization of Pythagorean fuzzy subgroups, AIMS Math., 6 (2021), 962--978
-
[3]
I. Cristea, B. Davvaz, Atanassov's intuitionistic fuzzy grade of hypergroups, Inform. Sci., 180 (2010), 1506--1517
-
[4]
B. Davvaz, W. A. Dudek, Y. B. Jun, Intuitionistic fuzzy Hv-submodules, Inform. Sci., 176 (2006), 285--300
-
[5]
B. Davvaz, E. Hassani Sadrabadi, An application of intuitionistic fuzzy sets in medicine, Int. J. Biomath., 9 (2016), 15 pages
-
[6]
S. K. De, R. Biswas, A. R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets and Systems, 117 (2001), 209--213
-
[7]
P. A. Ejegwa, A. J. Akubo, O. M. Joshua, Intuitionistic fuzzzy sets in career determination, J. Info. Comput. Sci., 9 (2014), 285--288
-
[8]
P. A. Ejegwa, E. S. Modom, Diagnosis of viral hepatitis using new distance measure of intuitionistic fuzzy sets, Int. J. Fuzzy Math. Arch., 8 (2015), 1--7
-
[9]
H. Garg, K. Kumar, An advance study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making, Soft. Comput., 22 (2018), 4959--4970
-
[10]
H. Garg, K. Kumar, Distance measures for connection number sets based on set pair analysis and its applications to decision making process, Appl. Intel., 48 (2018), 3346--3359
-
[11]
S. M. Hong, K. H. Kim, Y. B. Jun, Intuitionistic fuzzy subalgebras of BCK/BCI-algebras, Korean J. Comput. Appl. Math., 8 (2001), 261--272
-
[12]
Y. Huang, BCI-algebra, Science Press, Beijing (2006)
-
[13]
S. Husain, Y. Ahmad, M. Afshar Alam, A study on the role of intuitionistic fuzzy set in decision making problems, Int. J. Comput. Appl., 48 (2012), 35--41
-
[14]
H. Z. Ibrahim, T. M. Al-shami, O. G. Elbarbary, $(3, 2)$-fuzzy sets and their applications to topology and optimal choice, Computational Intelligence and Neuroscience, 2021 (2021), 14 pages
-
[15]
Y. B. Jun, K. H. Kim, Intuitionistic fuzzy ideals in BCK-algebras, Int. J. Math. Math. Sci., 24 (2000), 839--849
-
[16]
J. Meng, Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul (1994)
-
[17]
M. Olgun, M. Ünver, Ş. Yardımcı, Pythagorean fuzzy topological spaces, Complex & Intelligent Systems, 5 (2019), 177--183
-
[18]
A. Satirad, R. Chinram, A. Iampan, Pythagorean fuzzy sets in UP-algebras and approximations, AIMS Math., 6 (2021), 6002--6032
-
[19]
T. Senapati, R. R. Yager, Fermatean fuzzy sets, Journal of Ambient Intelligence and Humanized Computing, 11 (2020), 663--674
-
[20]
I. Silambarasan, Fermatean fuzzy subgroups, J. Int. Math. Virtual Inst., 11 (2021), 1--16
-
[21]
R. R. Yager, Pythagorean fuzzy subsets, Proceedings of the Joint IFSA World Congress and NAFIPS Annual Meeting (Edmonton, Canada), 2013 (2013), 57--61
-
[22]
R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22 (2013), 958--965
-
[23]
R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, Int. J. Intell. Syst., 28 (2013), 436--452
-
[24]
S. Yamak, O. Kazanc, B. Davvaz, Divisible and pure intuitionistic fuzzy subgroups and their properties, Int. J. Fuzzy Syst., 10 (2008), 298--307
-
[25]
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338--353