Sawi transform and Hyers-Ulam stability of \(n^{\rm th}\) order linear differential equations
Authors
M. Jayapriya
- Department of Mathematics, Government Arts and Science College, Hosur, Tamilnadu, 636902, India.
A. Ganesh
- Department of Mathematics, Government Arts and Science College, Hosur, Tamilnadu, 636902, India.
Sh. S. Santra
- Department of Mathematics, JIS College of Engineering, Kalyani, West Bengal, 741235, India.
R. Edwan
- College Of Science And arts, Al-Ola, Taibah University, Al madinah Al Munawwarahn 344, Saudi Arabia.
D. Baleanu
- Department of Mathematics and Computer Science, Faculty of Arts and Sciences, Ankaya University, Ankara, 06790 Etimesgut, Turkey.
- Instiute of Space Sciences , Magurele-Bucharest, 077125 Magurele, Romania.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, Republic of China.
Kh. M. Khedher
- Department of Civil Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia.
- Department of Civil Engineering, High Institute of Technological Studies, Mrezgua University Campus, Nabeul, 8000, Tunisia.
Abstract
The use of the Sawi transform has increased in the light of recent events in different approaches. The Sawi transform is also seen as the easiest and most effective way among the other transforms. In line with this, the research deals with the Hyers-Ulam stability of \(n^{\rm th}\) order differential equations using the Sawi transform. The study aims at deriving a generalised Hyers-Ulam stability result for linear homogeneous and non-homogeneous differential equations.
Share and Cite
ISRP Style
M. Jayapriya, A. Ganesh, Sh. S. Santra, R. Edwan, D. Baleanu, Kh. M. Khedher, Sawi transform and Hyers-Ulam stability of \(n^{\rm th}\) order linear differential equations, Journal of Mathematics and Computer Science, 28 (2023), no. 4, 393--411
AMA Style
Jayapriya M., Ganesh A., Santra Sh. S., Edwan R., Baleanu D., Khedher Kh. M., Sawi transform and Hyers-Ulam stability of \(n^{\rm th}\) order linear differential equations. J Math Comput SCI-JM. (2023); 28(4):393--411
Chicago/Turabian Style
Jayapriya, M., Ganesh, A., Santra, Sh. S., Edwan, R., Baleanu, D., Khedher, Kh. M.. "Sawi transform and Hyers-Ulam stability of \(n^{\rm th}\) order linear differential equations." Journal of Mathematics and Computer Science, 28, no. 4 (2023): 393--411
Keywords
- Hyers-Ulam stability (HUS)
- Hyers-Ulam \(\sigma\)-stability (\(\sigma\)HUS)
- differential equation (DE)
- Sawi transform (ST)
MSC
- 26D10
- 34A40
- 34K20
- 39A30
- 39B82
- 44A10
References
-
[1]
S. Aggarwal, A comparative study of Mohand and Mahgoub transforms, J. Adv. Res. Appl. Math. Statist., 4 (2019), 1--7
-
[2]
S. Aggarwal, R. Chauhan, A comparative study of Mohand and Aboodh transforms, Int. J. Res. Advent Tech., 7 (2019), 520--529
-
[3]
S. Aggarwal, A. R. Gupta, Dualities between some useful integral transforms and Sawi transform, Int. J. Recent Tech. Eng., 8 (2019), 5978--5982
-
[4]
S. Aggarwal, S. D. Sharma, A. Vyas, Application of Sawi transform for solving convolution type Volterra integrodifferential equation of first kind, Int. J. Latest Tech. Eng. Manag. Appl. Sci., 9 (2020), 13--29
-
[5]
M. Bohner, T. S. Hassan, T. X. Li, Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equation with deviating arguments, Indag. Math. (N.S.), 29 (2018), 548--560
-
[6]
M. Bohner, T. X. Li, Kamenev-type criteria for nonlinear damped dynamic equations, Sci. China Math., 58 (2015), 1445--1452
-
[7]
K.-S. Chiu, T. X. Li, Oscillatory and periodic solutions of differential equations with piecewise constant generalized mixed arguments, Math. Nachr., 292 (2019), 2153--2164
-
[8]
J. Džurina, S. R. Grace, I. Jadlovska, T. X. Li, Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910--922
-
[9]
E. M. Elabbasy, A. Nabih, T. A. Nofal, W. R. Alharbi, O. Moaaz, Neutral differential equations with noncanonical operator: oscillation behavior of solutions, AIMS Math., 6 (2021), 3272--3287
-
[10]
S. Frassu, G. Viglialoro, Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent, Nonlinear Anal., 213 (2021), 16 pages
-
[11]
A. Ganesh, S. Deepa, D. Baleanu, S. S. Santra, O. Moaaz, V. Govindan, R. Ali, Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two Caputo derivative using fractional Fourier transform, AIMS Math., 7 (2022), 1791--1810
-
[12]
J. L. Goldberg, A. J. Schwartz, System of ordinary differential equations: an introduction, Harper & Row, New York (1972)
-
[13]
M. Higazy, S. Aggarwal, T. A. Nofal, Sawi decomposition method for Volterra integral equation with application, J. Math., 2020 (2020), 13 pages
-
[14]
H. Khan, W. Chen, A. Khan, T. S. Khan, Q. M. Al-Madlal, Hyers-Ulam stability and existence criteria for coupled fractional differential equations involving p-Laplacian operator, Adv. Difference Equ., 2018 (2018), 16 pages
-
[15]
T. X. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 18 pages
-
[16]
T.-X. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 288 (2015), 1150--1162
-
[17]
T.-X. Li, Y. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden-Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53--59
-
[18]
T. X. Li, Y. V. Rogovchenko, Oscillation criteria for second–order superlinear Emden–Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489--500
-
[19]
T. X. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 7 pages
-
[20]
T. X. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction dominated regime, Differ. Integ. Equ., 34 (2021), 315--336
-
[21]
D. Lu, M. Suleman, J. H. He, U. Farooq, S. Noeiaghdam, F. A. Chandio, Elzaki projected differential transform method for fractional order system of linear and nonlinear fractional partial differential equation, Fractals, 26 (2018), 10 pages
-
[22]
D. Lu, M. Suleman, J. Ul Rahman, S. Noeiaghdam, G. Murtaza, Numerical Simulation of Fractional ZakharovKuznetsov Equation for Description of Temporal Discontinuity Using Projected Differential Transform Method, Complexity, 2021 (2021), 13 pages
-
[23]
M. M. A. Mahgoub, The new integral transform ”Sawi Transform”, Adv. Theoretical Appl. Math., 14 (2019), 81--87
-
[24]
S. Noeiaghdam, E. Zarei, H. B. Kelishami, Homotopy analysis transform method for solving Abel’s integral equations of the first kind, Ain Shams Eng. J., 7 (2016), 483--495
-
[25]
M. Ruggieri, S. S. Santra, A. Scapellato, On nonlinear impulsive differential systems with canonical and non-canonical operators, Appl. Anal., 2021 (2021), 13 pages
-
[26]
M. Ruggieri, S. S. Santra, A. Scapellato, Oscillatory Behavior of Second-Order Neutral Differential Equations, Bull. Braz. Math. Soc., 2021 (2021), 11 pages
-
[27]
S. S. Santra, D. Baleanu, K. M. Khedher, O. Moaaz, First-order impulsive differential systems: sufficient and necessary conditions for oscillatory or asymptotic behavior, Adv. Difference Equ., 2021 (2021), 20 pages
-
[28]
S. S. Santra, A. Ghosh, O. Bazighifan, K. M. Khedher, T. A. Nofal, Second-order impulsive differential systems with mixed and several delays, Adv. Difference Equ., 2021 (2021), 12 pages
-
[29]
G. P. Singh, S. Aggarwal, Sawi transform for population growth and decay problems, Int. J. Latest Tech. Eng., Manag. Appl. Sci., 8 (2019), 157--162
-
[30]
G. Viglialoro, Global in time and bounded solutions to a parabolic-elliptic chemotaxis system with nonlinear diffusion and signal-dependent sensitivity, Appl. Math. Optim., 83 (2021), 979--1004
-
[31]
J. Vigo-Aguiar, P. Alonso, H. Ramos, Computational and mathematical methods in science and engineering [Editorial], J. Comput. Appl. Math., 404 (2022), 2 pages
-
[32]
D. G. Zill, A first course in differential equations with applications, 7th ed., Arden Shakespeare, Boston (2000)