Generalised Hermite-Hadamard type inequalities for \((s,r)\)-convex functions in mixed kind with applications
Volume 30, Issue 4, pp 372--380
http://dx.doi.org/10.22436/jmcs.030.04.06
Publication Date: February 18, 2023
Submission Date: December 15, 2022
Revision Date: January 16, 2023
Accteptance Date: January 30, 2023
Authors
F. Mehmood
- Department of Mathematics, Samarkand State University, Samarkand 140104, Uzbekistan.
- Department of Mathematics, Dawood University of Engineering and Technology, Karachi-74800, Pakistan.
F. Nawaz
- Department of Mathematics, Dawood University of Engineering and Technology, Karachi-74800, Pakistan.
A. Soleev
- Department of Mathematics, Samarkand State University, Samarkand 140104, Uzbekistan.
Abstract
In this article, some generalized inequalities of the Hermite-Hadamard type for functions whose modulus of the derivatives are \((s,r)\)-convex in mixed kind and applications for probability theory and numerical integration are given. Various established results of different articles would be recaptured as special cases. We also provide special cases of the class of \((s,r)\)-convex function on several choices of \(s,r\).
Share and Cite
ISRP Style
F. Mehmood, F. Nawaz, A. Soleev, Generalised Hermite-Hadamard type inequalities for \((s,r)\)-convex functions in mixed kind with applications, Journal of Mathematics and Computer Science, 30 (2023), no. 4, 372--380
AMA Style
Mehmood F., Nawaz F., Soleev A., Generalised Hermite-Hadamard type inequalities for \((s,r)\)-convex functions in mixed kind with applications. J Math Comput SCI-JM. (2023); 30(4):372--380
Chicago/Turabian Style
Mehmood, F., Nawaz, F., Soleev, A.. "Generalised Hermite-Hadamard type inequalities for \((s,r)\)-convex functions in mixed kind with applications." Journal of Mathematics and Computer Science, 30, no. 4 (2023): 372--380
Keywords
- Convex function
- Hermite-Hadamard inequality
- Hölder inequality
- power-mean inequality
- numerical integration
- probability density function
MSC
- 26A33
- 26A51
- 26D15
- 26D99
- 47A30
- 33B10
References
-
[1]
M. Alomari, M. Darus, S. S. Dragomir, Inequalities of Hermite-Hadamard’s type for functions whose derivatives absolute values are quasi-convex, RGMIA Res. Rep. Coll., 12 (2009), 11 pages
-
[2]
E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc., 54 (1948), 439–460
-
[3]
S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., 33 (2002), 55–65
-
[4]
S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95
-
[5]
S. S. Dragomir, J. Peˇcari´c, L. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341
-
[6]
A. Ekinci, Klasik E¸sitsizlikler Yoluyla Konveks Fonksiyonlar i¸cin Integral E¸sitsizlikler, Ph.D. Thesis, Atat ¨ urk University, (2014),
-
[7]
E. K. Godunova, V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, Numer. Math. Math. Phys. (Russian), 166 (1985), 138–142
-
[8]
A. Hassan, A. R. Khan, Generalization of Ostrowski inequality via fractional integrals, Submitted, (),
-
[9]
H. Kavurmaci, M. Avci, M. E. O¨ zdemir, New inequalities of hermite-hadamard type for convex functions with applications, J. Inequal. Appl., 2011 (2011), 11 pages
-
[10]
A. R. Khan, F. Mehmood, F. Nawaz, A. Nazir, Some Remarks on Results Related to r-Convex Function, J. Math. Fund. Sci., 53 (2021), 67–85
-
[11]
U. S. Kirmaci, Improvement and further generalization of inequalities for differentiable mappings and applications, Comput. Math. Appl., 55 (2008), 485–493
-
[12]
U. S. Kirmaci, M. Klaricˇic´ Bakula, M. E. O¨ zdemir, J. Pecˇaric´, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput., 193 (2007), 26–35
-
[13]
W. J. Liu, W. S. Wen, J. K. Park, Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 766–777
-
[14]
D. S. Mitrinovi´c, I. B. Lackovi´, Hermite and convexity, Aequationes Math., 28 (1985), 229–232
-
[15]
M. A. Noor, M. U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals, Transylv. J. Math. Mech., 5 (2013), 129–136
-
[16]
A. Owusu-Hemeng, P. Kwasi Sarpong, J. Ackora-Prah, The Role of Concave and Convex Functions in the Study of Linear & Non-Linear Programming, Dama International Journal of Researchers, 3 (2018), 15–29
-
[17]
C. E. M. Pearce, J. Peˇcari´, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13 (2000), 51–55
-
[18]
J. E. Peˇcari´c, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, Boston (1992)
-
[19]
M. Z. Sarikaya, E. Set, M. E. O¨ zdemir, On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comenian. (N.S.), 79 (2010), 265–272