The dynamics of Nipah virus (NiV) transmission and analysis
Authors
A. L. Ozioko
- Department of mathematics, Federal University Lokoja, Kogi State, Nigeria.
R. O. Aja
- Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Nigeria.
S. I. S. Abang
- National Centre for Technology management, An Agency of Federal Ministry of Science and Technology PRODA Training Institute, Enugu State, Nigeria.
W. Atokolo
- Departmet of Mathematics, Kogi State University, Anyigba, Nigeria.
Q. O. Ahman
- Department of Mathematical Sciences, Confluence State University, Kogi State, Nigeria.
G. C. E. Mbah
- Department of Mathematics, University of Nigeria, Nsukka, Nigeria.
Abstract
We propose a model for NiV infection mechanisms from pigs to humans and humans to humans, with a focus on the impact of a combination vaccine, and condom as a control measure. In a biologically realistic setting, we derived the basic characteristics of our suggested model, such as boundedness and positivity. We determined the basic reproduction number to investigate both the local and global behavior of the model's various equilibria. When the reproductive number is less than one, the disease-free state of Nipah virus is locally asymptotically stable, but unstable when it is higher than one. We established that the endemic equilibrium is locally asymptotically stable near unity using central manifold theory. Nipah virus free equilibrium is stable on the global stability scale, and endemic equilibrium is asymptotically stable. We determine that vaccination and condom are effective ways for reducing Nipah virus spread. In addition, Nipah virus carriers (asymptomatic) are identified as the most infectious individuals who should be targeted by the model. Finally, numerical simulations are used to verify the efficacy of the provided findings.
Share and Cite
ISRP Style
A. L. Ozioko, R. O. Aja, S. I. S. Abang, W. Atokolo, Q. O. Ahman, G. C. E. Mbah, The dynamics of Nipah virus (NiV) transmission and analysis, Journal of Mathematics and Computer Science, 31 (2023), no. 4, 367--391
AMA Style
Ozioko A. L., Aja R. O., Abang S. I. S., Atokolo W., Ahman Q. O., Mbah G. C. E., The dynamics of Nipah virus (NiV) transmission and analysis. J Math Comput SCI-JM. (2023); 31(4):367--391
Chicago/Turabian Style
Ozioko, A. L., Aja, R. O., Abang, S. I. S., Atokolo, W., Ahman, Q. O., Mbah, G. C. E.. "The dynamics of Nipah virus (NiV) transmission and analysis." Journal of Mathematics and Computer Science, 31, no. 4 (2023): 367--391
Keywords
- Nipah virus
- vaccination
- condom
- isolation
- asymptomatic
MSC
References
-
[1]
P. Agarwal, J. J. Nieto, M. Ruzhansky, D. F. M. Torres, Analysis of infectious disease problems (Covid-19) and their global impact, Springer, Singapore (2021)
-
[2]
P. Agarwal, M. A. Ramadan, A. A. M. Rageh, A. R. Hadhoud, A fractional-order mathematical model for analyzing the pandemic trend of COVID-19, Math. Methods Appl. Sci., 45 (2022), 4625–4642
-
[3]
N. M. Amal, M. S. Lye, T. G. Ksiazek, P. D. Kitsutani, K. S. Hanjeet, M. A. Kamaluddin, F. Ong, S. Devi, P. C. Stockton, O. Ghazali, R. Zainab, M. A. Taha, Risk factors for Nipah virus transmission, Port Dickson, Negeri Sembilan, Malaysia: results from a hospital-based case-control study, Southeast Asian J. Trop. Med. Public Health, 31 (2000), 301–306
-
[4]
A. S. Ambat, S. M. Zubair, N. Prasad, P. Pundir, E. Rajwar, D. S. Patil, P. Mangad, Nipah virus: A review on epidemiological characteristics and outbreaks to inform public health decision making, J. Infect. Public Health, 12 (2019), 634–639
-
[5]
P. Agarwal, R. Singh, Modelling of transmission dynamics of Nipah virus (Niv): a fractional order approach, Phys. A, 547 (2020), 11 pages
-
[6]
Q. O. Ahman, D. Omale, C. C. Asogwa, D. U. Nnaji, G. C. E. Mbah, Transmission dynamics of Ebola Virus Disease with vaccine, condom use, quarantine, isolation and treatment drug, Afr. J. Infect. Dis., 15 (2021), 10–23
-
[7]
J. Arino, C. C. McCluskey, P. van den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 64 (2003), 260–276
-
[8]
W. Atokolo, G. C. E. Mbah, Modeling the control of zika virus vector population using the Sterile Insect Technology, J. Appl. Math., 2020 (2020), 12 pages
-
[9]
M. H. A. Biswas, Optimal control of Nipah virus (NiV) infections: a Bangladesh scenario, J. Pure Appl. Math.: Adv. Appl., 12 (2014), 77–104
-
[10]
M. H. A. Biswas, M. M. Haque, G. Duvvuru, A mathematical model for understanding the spread of nipah fever epidemic in Bangladesh, In: 2015 International Conference on Industrial Engineering and Operations Management (IEOM), IEEE, (2015), 1–8
-
[11]
R. Bronson, G. B. Costa, Matrix Methods: Applied Linear Algebra and Sabermetrics, Fourth Edition, Academic Press, (2020)
-
[12]
C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361–404
-
[13]
S. M. E. K. Chowdhury, J. T. Chowdhury, S. F. Ahmed, P. Agarwal, I. A. Badruddin, S. Kamangar, Mathematical modelling of COVID-19 disease dynamics: interaction between immune system and SARS-CoV-2 within host, AIMS Math., 7 (2022), 2618–2633
-
[14]
K. B. Chua, Nipah virus outbreak in Malaysia, J. Clin. Virol., 26 (2003), 265–275
-
[15]
K. B. Chua, W. J. Bellini, P. A. Rota, B. H. Harcourt, A. Tamin, S. K. Lam, T. G. Ksiazek, P. E. Rollin, S. R. Zaki, W.-J. Shieh, C. S. Goldsmith, D. J. Gubler, J. T. Roehrig, B. Eaton, A. R. Gould, J. Olson, H. Field, P. Daniels, A. E. Ling, C. J. Peters, L. J. Anderson, B. W. J. Mahy, Nipah virus: a recently emergent deadly paramyxovirus, Science, 288 (2000), 1432–1435
-
[16]
O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, Mathematical epidemiology of infectious diseases, John Wiley & Sons, Chichester (2000)
-
[17]
M. Z. Hassan, H. M. S. Sazzad, S. P. Luby, K. Sturm-Ramirez, M. U. Bhuiyan, M. Z. Rahman, M. M. Islam, U. Str ¨oher, S. Sultana, M. A. H. Kafi, P. Daszak, M. Rahman, E. S. Gurley, Nipah virus contamination of hospital surfaces during outbreaks, Bangladesh, 2013–2014, Emerg. Infect. Dis., 24 (2018), 15–21
-
[18]
J. M. Hughes, M. E. Wilson, S. P. Luby, E. S. Gurley, M. J. Hossain, Transmission of human infection with Nipah virus, Clin. Infect. Dis., 49 (2009), 1743–1748
-
[19]
D. M. Knipe, P. M. Howley, Fields virology 5th edition, Lippincott Williams & Wilkins, Philadelphia (2007)
-
[20]
D. D. Kulkarni, C. Tosh, G. Venkatesh, D. Senthil Kumar, Nipah virus infection: current scenario, Indian J. Virol., 24 (2013), 398–408
-
[21]
S. Kumar, H. A. S. Sandhu, U. Awasthi, S. K. Singh, P. Agarwal, Analysis of COVID-19 outbreak using GIS and SEIR model, In: Fractional Order Systems and Applications in Engineering, Academic Press, (2023), 215–225
-
[22]
R. A. Lamb, Paramyxoviridae: the viruses and their replication, Fields virology, Lippincott Williams & Wilkins, (2001)
-
[23]
S. P. Luby, The pandemic potential of Nipah virus, Antivir. Res., 100 (2013), 38–43
-
[24]
M. K. Mondal, M. Hanif, M. H. A. Biswas, A mathematical analysis for controlling the spread of Nipah virus infection, Int. J. Model. Simul., 37 (2017), 185–197
-
[25]
B. I. Omede, P. O. Ameh, A. Omame, B. Bolaji, Modelling the transmission dynamics of Nipah virus with optimal control, arXiv preprint arXiv:2010.04111, (2020), 1–29
-
[26]
A. L. Ozioko, I. S. S. Abang, G. C. E. Mbah, M. O. Omeike, Application of quadratic Lyapunov function for SIR model with demography, Int. J. Math. Anal. Model., 5 (2022), 1–9
-
[27]
L. A. Ozioko, M. O. Omeike, A study of Lyapunov stability analysis of some third order non-linear ordinary differential equation, Abacus (Mathematics Science Series), 48 (2021), 200–210
-
[28]
P. Joi, The next pandemic: Nipah virus, Gavi, The Vaccine Alliance, (2021),
-
[29]
N. H. Shah, A. H. Suthar, F. A. Thakkar, M. H. Satia, SEI-model for transmission of Nipah virus, J. Math. Comput. Sci., 8 (2018), 714–730
-
[30]
J. Sultana, C. N. Podder, Mathematical analysis of nipah virus infections using optimal control theory, J. Appl. Math. Phys., 4 (2016), 13 pages
-
[31]
K.-S. Tan, C.-T. Tan, K.-J. Goh, Epidemiological aspects of Nipah virus infection, Neurol. J. Southeast Asia, 4 (1999), 77–81
-
[32]
A. U. Rehman, R. Singh, P. Agarwal, Modeling, analysis and prediction of new variants of covid-19 and dengue coinfection on complex network, Chaos Solitons Fractals, 150 (2021), 19 pages
-
[33]
Y. Xue, J. Wang, Backward bifurcation of an epidemic model with infectious force in infected and immune period and treatment, Abstr. Appl. Anal., 2012 (2012), 14 pages
-
[34]
A. D. Zewdie, S. Gakkhar, A Mathematical Model for Nipah Virus Infection, J. Appl. Math., 2020 (2020), 10 pages
-
[35]
S. N. Zhang, Comparison theorems on boundedness, Funkcial. Ekvac., 31 (1988), 179–196