Numerical analysis of fractional order discrete Bloch equations
Authors
M. Murugesan
- Department of Humanities and Science (Mathematics), S.A. Engineering College (Autonomous), Chennai-600077, India.
Sh. S. Santra
- Department of Mathematics, JIS College of Engineering, Kalyani, West Bengal 741235, India.
L. A. Jayanathan
- Department of Science and Humanities, R.M.K. College of Engineering and Technology, Chennai-601 206, Tamil Nadu, India.
D. Baleanu
- Department of Mathematics, Faculty of Arts and Sciences, Çankaya University, Ankara, 06790 Etimesgut, Turkey.
- Instiute of Space Sciences, Magurele-Bucharest, 077125 Magurele, Romania.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, Republic of China.
Abstract
By defining a new kind of \(h\)-extorial function with constant coefficient, this research seeks to solve discrete fractional Bloch equations. By using an extorial function of the Mittag-Leffler type, we are able to discover the general solutions for the magnetization's \(B_x, B_y\), and \(B_z\) components. These findings demonstrate the innovative method of fractional order Bloch equations. In addition, we offer a graphical representation of our results.
Share and Cite
ISRP Style
M. Murugesan, Sh. S. Santra, L. A. Jayanathan, D. Baleanu, Numerical analysis of fractional order discrete Bloch equations, Journal of Mathematics and Computer Science, 32 (2024), no. 3, 222--228
AMA Style
Murugesan M., Santra Sh. S., Jayanathan L. A., Baleanu D., Numerical analysis of fractional order discrete Bloch equations. J Math Comput SCI-JM. (2024); 32(3):222--228
Chicago/Turabian Style
Murugesan, M., Santra, Sh. S., Jayanathan, L. A., Baleanu, D.. "Numerical analysis of fractional order discrete Bloch equations." Journal of Mathematics and Computer Science, 32, no. 3 (2024): 222--228
Keywords
- Numerical analysis
- fractional derivative
- difference equation
- discrete Laplace transform
- Bloch equation
- Caputo derivative
MSC
- 47B39
- 39A70
- 65L05
- 65L06
- 26A33
References
-
[1]
T. Abdeljawad, Dual identities in fractional difference calculus within Riemann, Adv. Difference Equ., 2013 (2013), 16 pages
-
[2]
T. Abdeljawad, Different type kernel h-fractional differences and their fractional h-sums, Chaos, Solitons Fractals, 116 (2018), 146–156
-
[3]
T. Abdeljawad, D. Baleanu, Fractional differences and integration by parts, J. Comput. Anal. Appl., 13 (2011), 574–582
-
[4]
T. Abdeljawad, D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Difference Equ., 2016 (2016), 18 pages
-
[5]
F. M. Atıcı, S. S¸eng ¨ ul, Modeling with Fractional Difference Equations, J. Math. Anal. Appl., 369 (2010), 1–9
-
[6]
A. Columbu, S. Frassu, G. Viglialoro, Refined criteria toward boundedness in an attraction-repulsion chemotaxis system with nonlinear productions, Appl. Anal., (2023), 1–17
-
[7]
R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing Co., River Edge (2000)
-
[8]
A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Application of Fractional Differential Equations, Elsevier Science B.V., Amsterdam (2006)
-
[9]
T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 21 pages
-
[10]
T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 18 pages
-
[11]
T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, 34 (2021), 315–336
-
[12]
R. L. Magin, Fractional Calculus in Bioengineering, Critical Reviews, Begell House Publishers, (2004)
-
[13]
M. Meganathan, G. B. A. Xavier, T. Abdeljawad, Modeling with Fractional Laplace Transform by h-difference Operator, Progress in Fractional Differentiation and Applications, 6 (2020),
-
[14]
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA (1999)
-
[15]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon (1993)