Application of Laplace transform to solve fractional integro-differential equations
Volume 33, Issue 3, pp 225--237
https://dx.doi.org/10.22436/jmcs.033.03.02
Publication Date: January 13, 2024
Submission Date: August 29, 2023
Revision Date: September 21, 2023
Accteptance Date: October 14, 2023
Authors
T. Gunasekar
- Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R\(\&\)D Institute of Science and Technology, Chennai-600062, Tamil Nadu, India.
P. Raghavendran
- Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R\(\&\)D Institute of Science and Technology, Chennai-600062, Tamil Nadu, India.
Sh. S. Santra
- Department of Mathematics, JIS College of Engineering, Kalyani, West Bengal 741235, India.
D. Majumder
- Department of Mathematics, JIS College of Engineering, Kalyani-741235, West Bengal 741235, India.
D. Baleanu
- Institute of Space Sciences, Magurele-Bucharest, 077125 Magurele, Romania.
H. Balasundaram
- Department of Mathematics, Rajalakshmi Institute of Technology, Chennai-600124, Tamil Nadu, India.
Abstract
This paper reveals the solutions to several families of fractional integro-differential equations through the application of a simple fractional calculus method. This approach results in various interesting consequences and also extends the classical Frobenius method. The provided approach is primarily based on established theorems concerning particular solutions of fractional integro-differential equations using the Laplace transform and the extension coefficients of binomial series. Additionally, an illustrative example of such fractional integro-differential equations is presented.
Share and Cite
ISRP Style
T. Gunasekar, P. Raghavendran, Sh. S. Santra, D. Majumder, D. Baleanu, H. Balasundaram, Application of Laplace transform to solve fractional integro-differential equations, Journal of Mathematics and Computer Science, 33 (2024), no. 3, 225--237
AMA Style
Gunasekar T., Raghavendran P., Santra Sh. S., Majumder D., Baleanu D., Balasundaram H., Application of Laplace transform to solve fractional integro-differential equations. J Math Comput SCI-JM. (2024); 33(3):225--237
Chicago/Turabian Style
Gunasekar, T., Raghavendran, P., Santra, Sh. S., Majumder, D., Baleanu, D., Balasundaram, H.. "Application of Laplace transform to solve fractional integro-differential equations." Journal of Mathematics and Computer Science, 33, no. 3 (2024): 225--237
Keywords
- Riemann-Liouville fractional integrals
- fractional-order differential equation
- gamma function
- Mittag-Leffler function
- Wright function
- Laplace transform of the fractional derivative
MSC
- 26A33
- 44A10
- 34A05
- 33D05
- 33E12
References
-
[1]
M. Bohner, T. Li, Kamenev-type criteria for nonlinear damped dynamic equations, Sci. China Math., 58 (2015), 1445–1452
-
[2]
M. Caputo, Elasticit`a e Dissipazione, Zanichelli, Bologna (1969)
-
[3]
A. Columbu, S. Frassu, G. Viglialoro, Properties of given and detected unbounded solutions to a class of chemotaxis models, Stud. Appl. Math., 151 (2023), 1–31
-
[4]
J. DĖzurina, S. R. Grace, I. Jadlovsk´a, T. Li, Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922
-
[5]
T. M. Elzaki, S. M. Elzaki, T. M. Elzaki, S. M. Elzaki, Elixir Appl. Math., 36 (2011), 3226–3229
-
[6]
R. Gorenflo, S. Vessella, Abel integral equations: Analysis and applications, Lecture Notes in Mathematics, Springer- Verlag, , Berlin (1991)
-
[7]
C. Jayakumar, S. S. Santra, D. Baleanu, R. Edwan, V. Govindan, A. Murugesan, M. Altanji, Oscillation result for Half-Linear delay difference equations of second order, Math. Biosci. Eng., 19 (2022), 3879–3891
-
[8]
B. Jin, Fractional differential equations—an approach via fractional derivatives, Springer, Cham (2021)
-
[9]
K. Karthikeyan, A. Debbouche, D. F. M. Torres, Analysis of Hilfer fractional integro-differential equations with almost sectorial operators, Fractal Fract., 5 (2021), 1–13
-
[10]
V. Kiryakova, Commentary: A remark on the fractional integral operators and the image formulas of generalized Lommel- Wright function, Front. Phys., 7 (2019), 4 pages
-
[11]
V. Lakshmikantham, M. Rama Mohana Rao, Theory of integro-differential equations, Gordon and Breach Science Publishers, Lausanne (1995)
-
[12]
V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677– 2682
-
[13]
T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 21 pages
-
[14]
T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 18 pages
-
[15]
T. Li, Y. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden-Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53–59
-
[16]
T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 7 pages
-
[17]
T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, 34 (2021), 315–336
-
[18]
S.-D. Lin, C.-H. Lu, Laplace transform for solving some families of fractional differential equations and its applications, Adv. Difference Equ., 2013 (2013), 9 pages
-
[19]
F. Masood, O. Moaaz, S. S. Santra, U. Fernandez-Gamiz, H. A. El-Metwally, Oscillation theorems for fourth-order quasi-linear delay differential equations, AIMS Math., 8 (2023), 16291–16307
-
[20]
G. M. Mittag-Leffler, Sur la nouvelle fonction E(x), C. R. Acad. Sci. Paris, 137 (1903), 554–558
-
[21]
C. Muthamilarasi, S. S. Santra, G. Balasubramanian, V. Govindan, R. A. El-Nabulsi, K. M. Khedher, The stability analysis of A-Quartic functional equation, Mathematics, 9 (2021), 16 pages
-
[22]
D. Patil, Dualities between double integral transforms, Int. Adv. J. Sci., Eng. Technol., 7 (2020), 57–64
-
[23]
D. Patil, Application of integral transform (Laplace and Shehu) in chemical sciences, Aayushi Int. Interdiscip. Res. J., (2022), 437–441
-
[24]
R. Saadeh, A generalized approach of triple integral transforms and applications, J. Math., 2023 (2023), 12 pages
-
[25]
S. S. Santra, P. Mondal, M. E. Samei, H. Alotaibi, M. Altanji, T. Botmart, Study on the oscillation of solution to second-order impulsive systems, AIMS Math., 8 (2023), 22237–22255
-
[26]
F. S. Silva, D. M. Moreira, M. A. Moret, Conformable Laplace transform of fractional differential equations, Axioms, 7 (2018), 1–12
-
[27]
H. M. Srivastava, 1 An Introductory Overview of Special Functions and Their Associated Operators of Fractional Calculus, Special Functions Fract. Calc. Eng., (2023), 1–35
-
[28]
N. E. H. Taha1, R. I. Nuruddeen, A. K. H. Sedeeg, Dualities between”Kamal & Mahgoub Integral Transforms”and”Some Famous Integral Transforms”, Br. J. Appl. Sci. Technol., 20 (2017), 1–8
-
[29]
A. Y¨ uce, N. Tan, Inverse Laplace transforms of the fractional order transfer functions, In: 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), IEEE., (2019), 775–779