# Linear interpolation for spatial data grid by newton polynomials

Volume 16, Issue 3, pp 419-434
Publication Date: September 15, 2016 Submission Date: May 26, 2016
• 1050 Views ### Authors

Yiming Jiang - School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China. Xiaodong Hu - School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China. Sen Wu - School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China. Ancai Zhang - School of Automation and Electrical Engineering , Linyi University, Linyi Shandong 276000, China. Fei Yuan - China Electric Power Equipment and Technology co., Ltd. Beijing 100052, China. Lu Liu - School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China. Ridong Zha - School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.

### Abstract

This article concerns with an improved interpolation method based on Newton scheme with high dimensional data. It obtains the interpolation function when the nodes are arranged in a spatial grid. The spatial interpolation method is systematic and very useful in engineering field. As an example of application, we use the method to simulate the 3-D temperature field nearby a motor by 27 nodal temperature values. The results show that the interpolation function is quickly obtained within a limited cube space which realized data visualization. This demonstrates the effectiveness of the proposed method.

### Keywords

• Newton polynomials
• spatial interpolation
• numerical estimation
• data visualization
• simulation
• temperature field.

•  97N50
•  41A63
•  65D05

### References

•  B. Bojanov, Y. Xu , On polynomial interpolation of two variables, J. Approx. Theory, 120 (2003), 267-282.

•  C. de Boor, A. Ron , On multivariate polynomial interpolation, Constr. Approx., 6 (1990), 287-302.

•  L. Bos, M. Caliari, S. De Marchi, Y. Xu , Bivariate Lagrange interpolation at the Padua points: the generating curve approach , J. Approx. Theory, 143 (2006), 15-25.

•  M. Caliari, S. De Marchi, M. Vianello , Bivariate polynomial interpolation on the square at new nodal sets, Appl. Math. Comput., 165 (2005), 261-274.

•  M. Crainic, N. Crainic , Birkhoff interpolation with rectangular sets of nodes and with few derivatives, East J. Approx., 14 (2008), 423-437.

•  L. Du, Comparison of interpolation methods used in thermal recovery of heavy oil and the visualization of temperature field, Dalian University of Technology, (2008)

•  R. Franke, Scattered data interpolation: tests of some methods , Math. Comput., 38 (1982), 181-200.

•  M. Gasca, T. Sauer , Polynomial interpolation in several variables, Adv. Comput. Math., 12 (2000), 377-410.

•  R. A. Lorentz , Multivariate Birkhoff interpolation , Lecture Notes in Mathematics, Springer-Verlag, Berlin (1992)

•  T. Sauer, Y. Xu, On multivariate Lagrange interpolation , Math. Comput., 64 (1995), 1147-1170.

•  J. Su , Research on the modeling theory, method and realization technology of the visualization-oriented temperature field FEA, Zhejiang University, (2002)

•  Z. Tang , 3-D data field visualization, Tsinghua University Press, Beijing (1999)

•  D. N. Varsamis, N. P. Karampetakis , On the Newton bivariate polynomial interpolation with applications, Multidimens. Syst. Signal Process., 25 (2014), 179-209.

•  X. Wang, S. Zhang, T. Dong , Newton basis for multivariate Birkhoff interpolation , J. Comput. Appl. Math., 228 (2009), 466-479.

•  R. Wu, T. Wu, H. Li, A family of multivariate multiquadric quasi-interpolation operators with higher degree polynomial reproduction, J. Comput. Appl. Math., 274 (2015), 88-108.

•  H. Xiong, S. Zeng, Y. Mao , Applied mathematics foundation , Tianjin University Press, Tianjin (1993)