Closedness of the Rang of the Product of Projections in Hilbert Modules
-
2715
Downloads
-
4127
Views
Authors
Kamran Sharifi
- Department of Mathematics, Shahrood University of Technology, P. O. Box 3619995161-316, Shahrood, Iran
Abstract
Suppose P and Q are orthogonal projections between Hilbert C*-modules, then
PQ has closed range if and only if Ker(P)+Ran(Q) is an orthogonal summand,
Ker(Q)+ Ran(P) is an orthogonal summand.
Share and Cite
ISRP Style
Kamran Sharifi, Closedness of the Rang of the Product of Projections in Hilbert Modules, Journal of Mathematics and Computer Science, 2 (2011), no. 4, 588--593
AMA Style
Sharifi Kamran, Closedness of the Rang of the Product of Projections in Hilbert Modules. J Math Comput SCI-JM. (2011); 2(4):588--593
Chicago/Turabian Style
Sharifi, Kamran. "Closedness of the Rang of the Product of Projections in Hilbert Modules." Journal of Mathematics and Computer Science, 2, no. 4 (2011): 588--593
Keywords
- Hilbert C*-module
- projection
- Moore-Penrose inverse
- closed range.
MSC
References
-
[1]
R. Bouldin, The product of operators with closed range, Tôhoku Math. J., 25 (1973), 359--363
-
[2]
R. Bouldin, Closed range and relative regularity for products, J. Math. Anal. Appl., 61 (1977), 397--403
-
[3]
F. Deutsch, The angle between subspaces in Hilbert space, in: Approximation theory, wavelets and applications, 1995 (1995), 107--130
-
[4]
M. Frank, K. Sharifi, Adjointability of densely defined closed operators and the Magajna-Schweizer Theorem, J. Operator Theory, 63 (2010), 271--282
-
[5]
M. Frank, K. Sharifi , Generalized inverses and polar decomposition of unbounded regular operators on Hilbert C*-modules , J. Operator Theory, Vol. 64, 377--386 (2008)
-
[6]
J. M. Gracia-Bonda, J. C. Várilly, H. Figueroa, Elements of noncommutative geometry, Birkhäuser, Boston (2000)
-
[7]
S. Izumino, The product of operators with closed range and an extension of the revers order law, Tôhoku Math. J., 34 (1982), 43--52
-
[8]
J. J. Koliha, The Drazin and Moore-Penrose inverse in C*-algebras, Proc. Roy. Irish Acad. Sect. A, 99 (1999), 17--27
-
[9]
J. J. Koliha, V. Rakočević, Fredholm properties of the difference of orthogonal projections in a Hilbert space, Integr. Equ. Oper. Theory , 52 (2005), 125--134
-
[10]
E. C. Lance , Hilbert C*-modules: a toolkit for operator algebraists, Cambridge University Press, Cambridge (1995)
-
[11]
G. J. Murphy, C*-algebras and Operator Theory, Academic Press, New York (1990)
-
[12]
I. Raeburn, D. P. Williams, Morita Equivalence and Continuous Trace C*-algebras, American Mathematical Soc., Providence (1998)
-
[13]
K. Sharifi, Descriptions of partial isometries on Hilbert C*-modules, Linear Algebra Appl., 431 (2009), 883--887
-
[14]
K. Sharifi , Groetsch’s Representation of Moore-Penrose inverses and illposed problems in Hilbert C*-modules, J. Math. Anal. Appl., 365 (2010), 646--652
-
[15]
Q. Xu, L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C*-modules, Linear Algebra Appl., 428 (2008), 992--1000