Development and implementation of innovative higher order inverse polynomial method for tackling physical models in epidemiology
Authors
S. E. Fadugba
- Department of Mathematics, Ekiti State University, Ado Ekiti, 360001, Nigeria.
M. C. Kekana
- Department of Mathematics, Tshwane University of Technology, Pretoria, South Africa.
N. Jeeva
- PG and Research Department of Mathematics, The Madura College, Madurai, Tamil Nadu, India.
I. Ibrahim
- Department of Mathematics, Federal University, Dutse, Nigeria.
Abstract
This study introduces a new approach termed the Higher Order Inverse Polynomial Method (HOIPM) to tackle diverse model types. We analyze HOIPM's unique attributes and verify them through three illustrative scenarios. Additionally, we conduct a comparative assessment with the classical fourth-order Runge-Kutta method (RK4) to evaluate accuracy and computational efficiency. Real-world applications, such as predator-prey, SIR, and SEIR models, highlight HOIPM's effectiveness.
Share and Cite
ISRP Style
S. E. Fadugba, M. C. Kekana, N. Jeeva, I. Ibrahim, Development and implementation of innovative higher order inverse polynomial method for tackling physical models in epidemiology, Journal of Mathematics and Computer Science, 36 (2025), no. 4, 444--454
AMA Style
Fadugba S. E. , Kekana M. C. , Jeeva N., Ibrahim I., Development and implementation of innovative higher order inverse polynomial method for tackling physical models in epidemiology. J Math Comput SCI-JM. (2025); 36(4):444--454
Chicago/Turabian Style
Fadugba, S. E. , Kekana, M. C. , Jeeva, N., Ibrahim, I.. "Development and implementation of innovative higher order inverse polynomial method for tackling physical models in epidemiology." Journal of Mathematics and Computer Science, 36, no. 4 (2025): 444--454
Keywords
- Computing performance
- convergence feature
- error
- precise value
- veracity
MSC
References
-
[1]
M. Abdullahi, G. I. Danbaba, S. Abdulseed, A New Multi-Block Super Class of BDF for Integrating First Order Stiff IVP of ODEs, Current Res. Interdiscip. Stud., (2023), 1–13
-
[2]
O. E. Abolarin, S. W. Akingbade, Derivation and application of fourth stage inverse polynomial scheme to initial value problems, IAENG Int. J. Appl. Math., 47 (2017), 459–464
-
[3]
A. A. Adeniji, S. E. Fadugba, M. Y. Shatalov, Comparative analysis of Lotka-Volterra type models with numerical methods using residuals in Mathematica, Commun. Math. Biol. Neurosci., 2022 (2022), 1–17
-
[4]
M. Al-Rahman El-Nor Osman, I. K. Adu, C. Yang, A Simple SEIR Mathematical Model of Malaria Transmission, Asian Res. J. Math., 7 (2017), 1–22
-
[5]
J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, Chichester (2016)
-
[6]
S. O. Edeki, S. E. Fadugba, V. O. Udjor, O. P. Ogundile, D. A. Dosunmu, O. Ugbenu, N. Akindele, S. C. Zelibe, T. O. Kehinde, B. A. Jonah, Approximate-analytical solutions of the quadratic Logistic differential model via SAM, J. Phys.: Conf. Ser., 2199 (2022), 1–6
-
[7]
S. E. Fadugba, I. Ibrahim, O. Adeyeye, A. A. Adeniji, M. C. Kekana, J. T. Okunlola, A proposed sixth order inverse polynomial method for the solution of non-linear physical models, J. Math. Comput. Sci., 32 (2024), 94–108
-
[8]
S. E. Fadugba, V. J. Shaalini, A. A. Ibrahim, Development and analysis of fifth stage inverse polynomial scheme for the solution of stiff linear and nonlinear ordinary differential equations, J. Math. Comput. Sci., 10 (2020), 2926–2942
-
[9]
I. Ghosh, M. S. H. Chowdhury, S. M. Aznam, Numerical treatment on a chaos model of fluid flow using new iterative method, J. Adv. Res. Fluid Mech. Therm. Sci., 96 (2022), 25–35
-
[10]
I. Ghosh, M. M. Rashid, P. Ghosh, S. Mawa, R. Roy, M. M. Ahsan, K. D. Gupta, Accurate Numerical Treatment on a Stochastic SIR Epidemic Model with Optimal Control Strategy, Technologies, 10 (2022), 1–17
-
[11]
I. Ghosh, M. M. Rashid, S. Mawa, An evaluation of multispecies population dynamics models through numerical simulations using the new iterative method, Healthcare Anal., 4 (2023), 1–11
-
[12]
A. Hayat, S. S. Hasen, Improved High order Euler Method for Numerical Solution of Initial value Time-Lag Differential Equations, Iraqi J. Sci., 59 (2018), 383–388
-
[13]
M. Heydari, G. B. Loghmani, S. M. Hosseini, An improved piecewise variational iteration method for solving strongly nonlinear oscillators, Comput. Appl. Math., 34 (2015), 215–249
-
[14]
M. Heydari, G. B. Loghmani, S. M. Hosseini, Exponential Bernstein functions: an effective tool for the solution of heat transfer of a micropolar fluid through a porous medium with radiation, Comput. Appl. Math., 36 (2017), 647–675
-
[15]
M. Heydari, G. B. Loghmani, S. M. Hosseini, S. M. Karbassi, Application of hybrid functions for solving Duffingharmonic oscillator, J. Differ. Equ., 2014 (2014), 9 pages
-
[16]
M. Heydari, G. B. Loghmani, A.-M. Wazwaz, A numerical approach for a class of astrophysics equations using piecewise spectral-variational iteration method, Int. J. Numer. Methods Heat Fluid Flow, 27 (2017), 358–378
-
[17]
M. H. Heydari, M. Razzaghi, A numerical approach for a class of nonlinear optimal control problems with piecewise fractional derivative, Chaos Solitons Fractals, 152 (2021), 9 pages
-
[18]
M. Heydari, M. Razzaghi, D. Baleanu, A numerical method based on the piecewise Jacobi functions for distributed-order fractional Schr¨odinger equation, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 15 pages
-
[19]
L. Lehmann, (https://math.stackexchange.com/users/115115/lutz-lehmann), Explanation and proof of the 4th order Runge-Kutta method, URL (version: 2023-07-04), (),
-
[20]
B. Li, S. Liu, J. Cui, J. Li, A simple predator-prey population model with rich dynamics, Appl. Sci., 6 (2016), 1–18
-
[21]
A. M. S. Mahdy, A numerical method for solving the nonlinear equations of Emden-Fowler model, J. Ocean Eng. Sci., (2022), 1–8
-
[22]
R. B. Ogunrinde, On a new inverse polynomial numerical scheme for the solution of initial value problems in ordinary differential equations, Int. J. Aerosp. Mech. Eng., 9 (2015), 131–137
-
[23]
R. B. Ogunrinde, R. R. Ogunrinde, S. E. Fadugba, Analysis of the properties of a derived one-step numerical method of a transcendental function, J. Interdiscip. Math., 24 (2021), 2201–2213
-
[24]
S. Qureshi, A. Soomro, F. S. Emmanuel, E. Hincal, A new family of L-stable block methods with relative measure of stability, Int. J. Appl. Nonlinear Sci., 3 (2022), 197–222
-
[25]
H. Ramos, G. Singh, V. Kanwar, S. Bhatia, Solving first-order initial-value problems by using an explicit non-standard A-stable one-step method in variable step-size formulation, Appl. Math. Comput., 268 (2015), 796–805
-
[26]
H. S. Rodrigues, Application of SIR epidemiological model: new trends, Int. J. Appl. Math. Inform., 10 (2016), 92–97
-
[27]
J. V. Shaalini, A. E. K. Pushpam, An application of exponential-polynomial single step method for viral model with delayed immune response, Adv. Math.: Sci. J., 8 (2019), 154–161
-
[28]
M. M. I. Sumon, M. Nurulhoque, A Comparative Study of Numerical Methods for Solving Initial Value Problems (IVP) of Ordinary Differential Equations (ODE), Am. J. Appl. Math., 11 (2023), 106–118
-
[29]
M. Tafakkori-Bafghi, G. B. Loghmani, M. Heydari, Numerical solution of two-point nonlinear boundary value problems via Legendre-Picard iteration method, Math. Comput. Simul., 199 (2022), 133–159