Development and implementation of innovative higher order inverse polynomial method for tackling physical models in epidemiology


Authors

S‎. ‎E‎. ‎ Fadugba - Department of Mathematics‎, Ekiti State University‎, Ado Ekiti‎, ‎360001, Nigeria. M‎. ‎C‎. ‎ Kekana - Department of Mathematics‎, Tshwane University of Technology‎, Pretoria, South Africa. N. Jeeva - PG and Research Department of Mathematics, The Madura College‎, Madurai‎, Tamil Nadu, India. I‎. ‎Ibrahim - Department of Mathematics‎, Federal University, Dutse‎, Nigeria.


Abstract

‎This study introduces a new approach termed the Higher Order Inverse Polynomial Method (HOIPM) to tackle diverse model types‎. ‎We analyze HOIPM's unique attributes and verify them through three illustrative scenarios‎. ‎Additionally‎, ‎we conduct a comparative assessment with the classical fourth-order Runge-Kutta method (RK4) to evaluate accuracy and computational efficiency‎. ‎Real-world applications‎, ‎such as predator-prey‎, ‎SIR‎, ‎and SEIR models‎, ‎highlight HOIPM's effectiveness‎. ‎


Share and Cite

  • Share on Facebook
  • Share on X
  • Share on LinkedIn
ISRP Style

S‎. ‎E‎. ‎ Fadugba, M‎. ‎C‎. ‎ Kekana, N. Jeeva, I‎. ‎Ibrahim, Development and implementation of innovative higher order inverse polynomial method for tackling physical models in epidemiology, Journal of Mathematics and Computer Science, 36 (2025), no. 4, 444--454

AMA Style

Fadugba S‎. ‎E‎. ‎, Kekana M‎. ‎C‎. ‎, Jeeva N., ‎Ibrahim I‎., Development and implementation of innovative higher order inverse polynomial method for tackling physical models in epidemiology. J Math Comput SCI-JM. (2025); 36(4):444--454

Chicago/Turabian Style

Fadugba, S‎. ‎E‎. ‎, Kekana, M‎. ‎C‎. ‎, Jeeva, N., ‎Ibrahim, I‎.. "Development and implementation of innovative higher order inverse polynomial method for tackling physical models in epidemiology." Journal of Mathematics and Computer Science, 36, no. 4 (2025): 444--454


Keywords


MSC


References