Results on the \(q\)-type \(k\)-Lidstone polynomials
Authors
M. Al-Towailb
- Department of Computer Science and Engineering, College of Applied Studies and Community Service, King Saud University, Riyadh, KSA.
Abstract
In this paper, we generalize the class of \(q\)-completely convex functions for Jackson \(q^{-1}\)-difference operator. We study the relation of this class to the problem of representation of functions by a \(q\)-type \(k\)-Lidstone series. Moreover, we provide some results for the fundamental polynomials that appear in the \(q\)-type \(k\)-Lidstone series expansion. In particular, we present these polynomials based on Green’s function of a certain \(q\)-differential equation.
Share and Cite
ISRP Style
M. Al-Towailb, Results on the \(q\)-type \(k\)-Lidstone polynomials, Journal of Mathematics and Computer Science, 37 (2025), no. 1, 82--93
AMA Style
Al-Towailb M., Results on the \(q\)-type \(k\)-Lidstone polynomials. J Math Comput SCI-JM. (2025); 37(1):82--93
Chicago/Turabian Style
Al-Towailb, M.. "Results on the \(q\)-type \(k\)-Lidstone polynomials." Journal of Mathematics and Computer Science, 37, no. 1 (2025): 82--93
Keywords
- \(q\)-Calculus
- \(q\)-differential operator
- Lidstone polynomials
- completely convex functions
MSC
- 05A30
- 41A58
- 39A70
- 40A05
- 11B83
References
-
[1]
R. P. Agarwal, P. J. Y. Wong, Lidstone polynomials and boundary value problems, Comput. Math. Appl., 17 (1989), 1397–1421
-
[2]
M. Al-Towailb, Z. S. I. Mansour, Conditional expanding of functions by q-Lidstone series, Axioms, 12 (2023), 1–18
-
[3]
M. Al-Towailb, Z. S. I. Mansour, A q-analog of the class of completely convex functions, Axioms, 12 (2023), 1–13
-
[4]
M. Al-Towailb, Z. S. I. Mansour, The q-Lidstone series involving q-Bernoulli and q-Euler polynomials generated by the third Jackson q-Bessel function, Kyoto J. Math., 64 (2024), 205–228
-
[5]
R. P. Boas, Jr., Representation of functions by Lidstone series, Duke Math. J., 10 (1943), 239–245
-
[6]
G. Budakçi, H. Oruç, A generalization of the Peano kernel and its applications, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 67 (2018), 229–241
-
[7]
G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge University Press, Cambridge (2004)
-
[8]
M. E. H. Ismail, Z. S. I. Mansour, q-analogs of Lidstone expansion theorem, two-point Taylor expansion theorem, and Bernoulli polynomials, Anal. Appl. (Singap.), 17 (2019), 853–895
-
[9]
F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203
-
[10]
B. Khan, I. Aldawish, S. Araci, M. G. Khan, Third Hankel determinant for the logarithmic coefficients of starlike functions associated with sine function, Fractal Fract., 6 (2022), 11 pages
-
[11]
M. G. Khan, B. Khan, F. M. O. Tawfiq, J.-S. Ro, Zalcman functional and majorization results for certain subfamilies of holomorphic functions, Axioms, 12 (2023), 13 pages
-
[12]
D. Leeming, A. Sharma, A generalization of the class of completely convex functions, Academic Press, New York- London (1972)
-
[13]
G. J. Lidstone, Notes on the extension of Aitken’s theorem (for polynomial interpolation) to the Everett types, Proc. Edinb. Math. Soc., 2 (1930), 16–19
-
[14]
J. G. Mikusi´ nski, Sur les fonctions kn(x) = P1 =0(-1)(xn+k=(n + k))!(k = 1, 2, ; n = 0, 1, , k - 1), Ann. Soc. Polon. Math., 21 (1948), 46–51
-
[15]
Z. Mansour, M. AL-Towailb, The Complementary q-Lidstone Interpolating Polynomials and Applications, Math. Comput. Appl., 25 (2020), 16 pages
-
[16]
Z. S. I. Mansour, M. AL-Towailb, A q-type k-Lidstone series for entire functions, AIMS Math., 8 (2023), 13525–13542
-
[17]
H. Portisky, On certain polynomial and other approximations to analytic functions, Proc. Natl. Acad. Sci., 16 (1930), 83–85
-
[18]
L. Shi, B. Ahmad, N. Khan, M. G. Khan, S. Araci, W. K. Mashwani, B. Khan, Coefficient estimates for a subclass of meromorphic multivalent q-close-to-convex functions, Symmetry, 13 (2021), 12 pages
-
[19]
J. M. Whittaker, On Lidstone’s Series and Two-Point Expansions of Analytic Functions, Proc. London Math. Soc. (2), 36 (1934), 451–469
-
[20]
D. V. Widder, Completely convex functions and Lidstone series, Trans. Amer. Math. Soc., 51 (1942), 387–398